

Grundlagen der Experimentalphysik 3 (Optik) WS 2017 / 18

Prof. Dr. Sebastian Loth
Institut für Funktionelle Materie und
Quantentechnologien

Dr. Andreas Volkmer3. Physikalisches Institut

ILIAS Link: https://ilias3.uni-stuttgart.de/goto-Uni-Stuttgart-crs 1344289.html

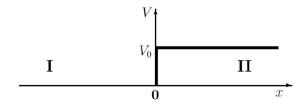
Webseite: https://www.fmq.uni-stuttgart.de/en/teaching

Übungsblatt 4

Aufgabe 8: Tunneleffekt

(9 Punkte)

Ebene Wellen der Form $\phi(x) = Ae^{ikx}$ mit $k = \sqrt{\frac{2m}{h^2}(E-V)}$ sind Lösung der eindimensionalen Schrödingergleichung für den feldfreien Raum. Nehmen Sie an, die ebene Welle fällt von links (Bereich I im Bild) auf eine Potentialbarriere, d.h. E < V, mit der Höhe V_0 . Quantenmechanisch kann die Wellenfunktion ein Stück in die Potentialbarriere eindringen. Dies ist als Tunneleffekt bekannt.



- a) Welche Form hat die Wahrscheinlichkeitsdichte $|\phi|^2$ vor dem Auftreffen auf die Potentialbarriere (Bereich I unter der Annahme, dass $V_0=0$)? Und welche Form hat sie in der Potentialbarriere (Bereich II)?
- b) Welche Anschlussbedingungen gelten für die Wellenfunktion am Übergang vom freien Raum in die Barriere? Hinweis: Überlegen Sie, welche Konsequenzen Unstetigkeiten in ϕ oder $\frac{d\phi}{dx}$ für die Lösung der Schrödingergleichung hätten.
- c) Bildet sich bei der Reflektion der ebenen Welle an der Barriere eine stehende Welle in $|\phi|^2$ aus oder nicht?
- d) Mit welcher Wahrscheinlichkeit kann ein Elektron mit 1 eV kinetischer Energie eine Potentialbarriere von 4 eV Höhe und 1 nm Breite durchtunneln?
- e) Nennen Sie drei Beispiele aus der Natur oder aus physikalischen Experimenten, in denen der Tunneleffekt eine wichtige Rolle spielt. Diskutieren Sie, was ohne den Tunneleffekt geschehen würde.

Hinweis: Diese Fragen können Sie analytisch oder numerisch mittels des in der Vorlesung besprochenen numerischen Verfahrens zur Lösung der Schrödingergleichung lösen.

Prof. Dr. Sebastian Loth

Institut für Funktionelle Materie und Quantentechnologien

Dr. Andreas Volkmer

3. Physikalisches Institut

Aufgabe 9: Ort-Impuls - Unschärferelation

(6 Punkte)

Für Messungen an Wellenfunktionen besteht eine Unschärferelation, die besagt, dass Ort und Impuls eines Teilchens nicht gleichzeitig beliebig genau bekannt sein können. Der exakte Ausdruck ist

$$\Delta x \cdot \Delta p \ge \frac{\hbar}{2}$$

- a) Betrachten Sie, wie wichtig diese Unschärfe für makroskopische Teilchen und für mikroskopische Teilchen? Vergleichen Sie dazu zwei Fälle: die Position einer Glaskugel mit 1 cm Durchmesser soll mit einer Genauigkeit von 1 µm bestimmt werden. Und die Position eines Elektrons soll mit einer Genauigkeit von 1 Å bestimmt werden. Wie groß ist jeweils die Unschärfe in der Geschwindigkeit der beiden Teilchen?
- b) Zeigen Sie, dass sich über das Superpositionsprinzip eine ähnliche Beziehung für die Unschärferelation finden läßt. Nehmen Sie dazu an, dass die Wellenfunktion eines Teilchens als gauss'sches Wellenpaket gegeben ist

$$\Psi(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{x^2}{2\sigma^2}}.$$

Betrachten Sie dazu, wie sich die spektrale Breite Δk des Wellenpakets im k-Raum zur Ausdehnung des Wellenpakets Δx im Ortsraum verhält. Δx ist die Distanz zwischen den beiden Werten, an denen $|\Psi|^2=\frac{1}{e}$ ist. Hinweis: Benutzen Sie, dass die Fouriertransformation F(k) einer Gaussfunktion $f(x)=e^{-ax^2}$ wieder eine Gaussfunktion ist mit $F(k)=\sqrt{\frac{\pi}{a}}e^{-\frac{k^2}{4a}}$.

Aufgabe 10: Eigenwerte, Eigenfunktionen und Erwartungswerte

(6 Punkte)

a) Überprüfen Sie, welche Funktionen Eigenfunktionen des Impulsoperators $\hat{p} = \frac{\hbar}{i} \frac{\partial}{\partial x}$ und/oder des Operators der kinetischen Energie $\hat{T} = \frac{\hbar^2}{2m} \frac{\partial}{\partial x^2}$ sind:

$$f_1 = e^{iax}$$

$$f_2 = e^{-ax^2}$$

$$f_3 = \cos(ax)$$

b) Was ist der Erwartungswert des Impulses für die drei Funktionen? Diskutieren Sie die Ergebnisse. Der Erwartungswert eines Operators für die Wellenfunktion ϕ ist definiert als

$$\langle \hat{A} \rangle = \int_{-\infty}^{\infty} \phi^* \hat{A} \phi \ dx$$

Berücksichtigen Sie die notwendige Normierung der Funktionen, damit gilt

$$\int_{-\infty}^{\infty} \phi^* \phi \ dx = 1$$

Hinweis: Sie können das Wissen der Erwartungswerte für Eigenfunktionen nutzen.