New paper on arXiv: Experimental entanglement generation using multiport beam splitters

February 1, 2023

Multi-photon entanglement plays a central role in optical quantum technologies. One way to entangle two photons is to prepare them in orthogonal internal states, for example, in two polarisations, and then send them through a balanced beam splitter. Post-selecting on the cases where there is one photon in each output port results in a maximally entangled state. This idea can be extended to schemes for the post-selected generation of larger entangled states. Typically, switching between different types of entangled states require different arrangements of beam splitters and so a new experimental setup. Here, we demonstrate a simple and versatile scheme to generate different types of genuine tripartite entangled states with only one experimental setup. We send three photons through a three-port splitter and vary their internal states before post-selecting on certain output distributions. This results in the generation of tripartite W, G and GHZ states. We obtain fidelities of up to (87.3±1.1)% with regard to the respective ideal states, confirming a successful generation of genuine tripartite entanglement.

Check out the paper here:

Shreya Kumar, Daniel Bhatti, Alex E. Jones, Stefanie Barz
Experimental entanglement generation using multiport beam splitters

To the top of the page