UNI STUTTGART – INSTITUT FÜR FUNKTIONELLE MATERIE UND QUANTENTECHNOLOGIEN Prof. Dr. M. Daghofer

Fortgeschrittene Vielteilchentheorie (WS 2018/2019) – Blatt 10

O Aufgabe 24: Kinematik gemischter Zustände

Wir betrachten ein Spin-1/2-System, bei dem der Spin-Operator in n-Richtung in der Basis $\mathcal{B}_z = \{|z+\rangle, |z-\rangle\}$ durch $S_n = (-\hbar/2)(n \cdot \sigma)$ gegeben ist. Der Einheitsvektor ist als

$$\mathbf{n} = \mathbf{n}(\theta, \varphi) = (\cos(\varphi)\sin(\theta), \sin(\varphi)\sin(\theta), \cos(\theta))^{\mathrm{T}} \quad \text{mit} \quad \theta \in [0, \pi], \varphi \in [0, 2\pi)$$
 (1)

parametrisiert. Die Koordinatenachsen werden mit $x \equiv n(\pi/2, 0)$, $y \equiv n(\pi/2, \pi/2)$ und $z \equiv n(0, 0)$ abgekürzt. Das System befinde sich im gemischten Zustand

$$\varrho_{\lambda} = \lambda |z+\rangle \langle z+| + (1-\lambda) |x+\rangle \langle x+| \tag{2}$$

mit $\lambda \in [0,1]$.

(a) Bestimmen Sie zwei orthonormale Vektoren $|\phi_{\lambda}^{1}\rangle$ und $|\phi_{\lambda}^{2}\rangle$ so, dass

$$\varrho_{\lambda} = p_{1}(\lambda) \left| \phi_{\lambda}^{1} \right\rangle \left\langle \phi_{\lambda}^{1} \right| + p_{2}(\lambda) \left| \phi_{\lambda}^{2} \right\rangle \left\langle \phi_{\lambda}^{2} \right| \tag{3}$$

gilt. Geben Sie $p_1(\lambda)$ und $p_2(\lambda)$ an. Ist die Darstellung (3) eindeutig?

(b) Geben Sie für $\lambda = 1/2$ zwei weitere Darstellungen der Form

$$\varrho_{1/2} = \sum_{i=1}^{N} p_i |\chi_i\rangle \langle \chi_i| \tag{4}$$

an. Die Zahl der Summanden N ist hierbei beliebig, die $|\chi_i\rangle$ müssen normiert, aber **nicht** orthogonal sein. Wie viele solcher Darstellungen gibt es? Welche allgemeinen Bedingungen sind an die p_i zu stellen?

(c) Berechnen Sie die von Neumann Entropie

$$S(\lambda) = -\operatorname{tr}[\varrho_{\lambda} \ln(\varrho_{\lambda})] \tag{5}$$

und plotten Sie die Funktion $S(\lambda)$. Für welchen Wert λ' wird $S(\lambda)$ maximal?

Es wird nun der Spin in Richtung $n(\theta, \varphi)$ gemessen.

(d) Mit welcher Wahrscheinlichkeit $p_+(\lambda, \theta, \varphi)$ wird der Messwert $s_+ = +\hbar/2$ erhalten? In welchem Zustand befindet sich das System, nachdem s_+ gemessen wurde? Hinweis: Nach der Messung eines Messwerts a_μ einer Observable A befindet sich das System

im Zustand

$$\varrho = \frac{P_{\mu}\varrho_0 P_{\mu}}{\operatorname{tr}(P_{\mu}\varrho_0 P_{\mu})},$$

wobei P_{μ} der Projektionsoperator auf den Unterraum der Eigenzustände zu a_{μ} ist.

(e) Berechnen Sie den Erwartungswert $\langle S_n \rangle_{\rho_{\lambda}}$, sowie die Streuung

$$(\Delta S_{n})_{\varrho_{\lambda}} = \sqrt{\langle S_{n}^{2} \rangle_{\varrho_{\lambda}} - \langle S_{n} \rangle_{\varrho_{\lambda}}^{2}} \tag{6}$$

als Funktion von λ , θ und φ .

UNI STUTTGART – INSTITUT FÜR FUNKTIONELLE MATERIE UND QUANTENTECHNOLOGIEN Prof. Dr. M. Daghofer

Fortgeschrittene Vielteilchentheorie (WS 2018/2019) – Blatt 10

○ Aufgabe 25: Permutationsoperator

Wir betrachten ein System von zwei Teilchen. Der Operator, welcher der Vertauschung der beiden Teilchen zugeordnet ist, bewirkt

$$P_{21} |u_i^{(1)} u_i^{(2)} \rangle \equiv |u_i^{(2)} u_i^{(1)} \rangle. \tag{7}$$

Der Operator P_{21} wird als Permutationsoperator bezeichnet. Zeigen Sie, dass für den Operator P_{21}

- (a) $P_{21}^{-1} = P_{21}^{\dagger} = P_{21}$ gilt.
- (b) P_{21} die Eigenwerte $\lambda=\pm 1$ besitzen kann und die Vektoren

$$|\psi_S\rangle \equiv \frac{1}{\sqrt{2}} \left(|u_i^{(1)} u_j^{(2)}\rangle + |u_i^{(2)} u_j^{(1)}\rangle \right), \quad |\psi_A\rangle \equiv \frac{1}{\sqrt{2}} \left(|u_i^{(1)} u_j^{(2)}\rangle - |u_i^{(2)} u_j^{(1)}\rangle \right), \tag{8}$$

Eigenvektoren von P_{21} sind. Der Index bezieht sich hierbei auf die symmetrische (S), bzw. antisymmetrische (A) Wellenfunktion.

- (c) Zeigen Sie, dass für den Ortsoperator q und den Impulsoperator p zweier Teilchen gilt:
 - (i) $P_{21}q^{(1)}P_{21}^{\dagger} = q^{(2)}, P_{21}q^{(2)}P_{21}^{\dagger} = q^{(1)}$
 - (ii) $P_{21}p^{(1)}P_{21}^{\dagger} = p^{(2)}, P_{21}p^{(2)}P_{21}^{\dagger} = p^{(1)}$

Aufgabe 26: Identische Teilchen im Potentialtopf (10 Punkte)

Gegeben seien zwei Teilchen in einem Potentialtopf

$$V(x) = \begin{cases} 0 & \text{für } |x| \le 1\\ \infty & \text{sonst.} \end{cases}$$
 (9)

Der Hamiltonoperator für zwei Teilchen lautet

$$H = \sum_{i=1}^{2} H^{(i)} \text{ mit } H^{(i)} = -\frac{1}{2} \partial_{x_i}^2 + V(x_i).$$
 (10)

wobei $H^{(i)}$ den Ein-Teilchen-Hamiltonoperator des i-ten Teilchens bezeichnet.

- (a) Erklären Sie, warum der Ein-Teilchenzustand als Produkt von Orts- und Spinkomponente geschrieben werden kann. Geben Sie zudem die zwei Ein-Teilchen-Wellenfunktionen niedrigster Energie und die zugehörigen Energien an. Es reicht, wenn Sie nur den Ortsanteil angeben. Bestimmen Sie den Grundzustand des Zwei-Fermionensystems mit dem Hamiltonoperator für die folgenden zwei Fälle:
 - Für einen Spin-Zustand, der antisymmetrisch bezüglich Vertauschung zweier Fermionen ist, d.h. dem Singulett-Zustand $(|\uparrow\downarrow\rangle |\downarrow\uparrow\rangle)/\sqrt{2}$.
 - Für einen Spin-Zustand, der symmetrische bezüglich Vertauschung ist, d.h. einen der Triplett-Zustände $|\uparrow\uparrow\rangle$, $|\downarrow\downarrow\rangle$ oder $(|\uparrow\downarrow\rangle+|\downarrow\uparrow\rangle)/\sqrt{2}$.

Plotten Sie die Wahscheinlichkeitsdichten in beiden Fällen (bspw. mittels Mathematica, Gnuplot, Matlab, . . .). (4 Punkte)

(b) Nehmen Sie nun eine Kontaktwechselwirkung zwischen den beiden Fermionen an. Diese sei durch das Potential $\lambda\delta(x_1-x_2)$ gegeben, wobei $\lambda\in\mathbb{R}$ deren Stärke beschreibt. Um sich den Einfluss dieser bewusst zu werden, bestimmen Sie die Energiekorrekturen erster Ordnung mittels erster Ordnung Störungstheorie ($|\lambda|\ll 1$) sowohl für den Singulett-, als auch für den Triplett-Zustand. Erklären Sie, warum das Ergebnis der Störungstheorie, im Falle des Triplett-Zustands, für alle λ richtig ist. (3 Punkte)

UNI STUTTGART – INSTITUT FÜR FUNKTIONELLE MATERIE UND QUANTENTECHNOLOGIEN Prof. Dr. M. Daghofer

Fortgeschrittene Vielteilchentheorie (WS 2018/2019) – Blatt 10

Wir erweitern das Problem auf zwei Dimensionen, sodass

$$V(x,y) = \begin{cases} 0 & \text{für } |x| \le a \text{ und } |y| < b \\ \infty & \text{sonst.} \end{cases}$$
 (11)

mit a < b gilt.

(c) Geben Sie den Grundzustand und ersten angeregten Zustand für ein Teilchen, sowie die Energie an. Bestimmen Sie nun analog zu (a) den Grundzustand des Zwei-Fermionensystems für den Fall des Tripletts und des Singletts. (3 Punkte)