Exercise 1

08.05.2015

1. For an open Ising chain of N spins the partition function is given by

$$
Z=2^{N} \prod_{i=1}^{N-1} \cosh \beta J_{i} \quad, \quad \beta=\frac{1}{\mathrm{k} T}
$$

Thereby J_{i} denotes the exchange interaction parameter between the spins at sites i and $i+1$. We first assume that the values of the J_{i} are fixed ("quenched disorder") and distributed randomly according to the following distribution $(0<z<1)$

$$
P\left(J_{i}\right)= \begin{cases}\frac{1}{2 z J} & \text { for } J(1-z) \leq J_{i} \leq J(1+z) \\ 0 & \text { otherwise }\end{cases}
$$

Calculate the free energy and the specific heat for that case for $T \rightarrow 0$ and $T \rightarrow \infty$. Then we assume that the values of J_{i} from the range $J(1-z) \leq J_{i} \leq J(1+z)$ are also in thermal equilibrium ("annealed disorder") and calculate again the free energy and the specific heat for $T \rightarrow 0$ and $T \rightarrow \infty$.
2. We assume that the positions of the atoms of a onedimensional quasicrystal are given by

$$
x_{N}=N+\alpha+\frac{1}{\rho}\left\lfloor\frac{N}{\sigma}+\beta\right\rfloor .
$$

Here $\lfloor z\rfloor$ is the largest integer number smaller than $z, \sigma>1$ is an arbitrary irrational number, and $\rho>0, \alpha$ and β are real numbers.
a. What are the distances between neighbouring atoms, and what is the probability to find one of these distances?
b. Show that (apart from a re-labeling) the quasicrystal remains the same when substituting simultaneously α by $\alpha+p+\frac{q}{\rho}$ and β by $\beta-q+\frac{p}{\sigma}$ with integer numbers q and p.
c. It can be shown that the above defined positions define a quasiperiodic arrangement of long (L) and short (S) atom distances. For the case $\sigma=\tau=(1+\sqrt{5}) / 2$ this sequence can be generated also in another way, starting from a single segment (L or S), by the repeated application of the substitution rule $L \rightarrow L S$ (i.e., an interval L in the sequence is replaced by a pair of intervals L and S) and $S \rightarrow L$ (i.e., the interval S is replaced by L). What is the value of L / S (and correspondingly of ρ) for which the substitution rule generates a self-similarity transformation (i.e., a transformation which does not change the statistical properties of the quasicrystal)?
3. The Fibonacci numbers F_{n} are defined by

$$
\begin{equation*}
F_{n}=F_{n-1}+F_{n-2} \quad \text { with } \quad F_{0}=0 \quad \text { and } \quad F_{1}=1 . \tag{1}
\end{equation*}
$$

a. Demonstrate that

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1}{2}(1+\sqrt{5})\right)^{n}-\left(\frac{1}{2}(1-\sqrt{5})\right)^{n}\right] .
$$

Hint: Use the ansatz $F_{n}=x^{n}$ in eq.(1)
b. Calculate $\lim _{n \rightarrow \infty} F_{n+1} / F_{n}$.
c. Figure out the interrelation between the substitution rule of exercise 2c and the Fibonacci numbers. Use the result of $\mathbf{3} \mathbf{b}$ to determine the probability to find intervals with length L and S.

