Problem Set 1

Problem 1 Operator Algebra (Homework)

- (a) Show that the following relations are valid:
 - (i) $(c\hat{A})^{\dagger} = c^* \hat{A}^{\dagger}$
 - (ii) $(\hat{A} + \hat{B})^{\dagger} = \hat{A}^{\dagger} + \hat{B}^{\dagger}$
 - (iii) $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$
 - (iv) $(\hat{A}^{\dagger})^{\dagger} = \hat{A}$
- (b) Prove the following commutator identities:
 - (i) $[\hat{A}\hat{B},\hat{C}] = \hat{A}[\hat{B},\hat{C}] + [\hat{A},\hat{C}]\hat{B}$
 - (ii) $[\hat{A}, \hat{B}]^{\dagger} = [\hat{B}^{\dagger}, \hat{A}^{\dagger}]$
 - (iii) $[[\hat{A}, \hat{B}], \hat{C}] + [[\hat{B}, \hat{C}], \hat{A}] + [[\hat{C}, \hat{A}], \hat{B}] = 0$ (Jacobi identity)
- (c) The exponent of an operator is defined by the power expansion

$$e^{\hat{A}} = \sum_{n=0}^{\infty} \frac{1}{n!} \hat{A}^n.$$
 (1)

Using this definition, or otherwise, express the operator

$$\hat{S}(a) = e^{a\hat{A}}, \text{ where } \hat{A} = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix} \text{ and } a \in \mathbb{R},$$
 (2)

as a 2×2 matrix.

Problem 2 Practice with Postulates in Quantum Mechanics

Consider a physical system whose three-dimensional state space is spanned by the orthonormal basis formed by the three kets $|1\rangle$, $|2\rangle$, $|3\rangle$. In this basis, the Hamiltonian \hat{H} of the system and the two observables \hat{A} and \hat{B} are written as

$$\hat{H} = \hbar \omega \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad \hat{A} = a \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad \hat{B} = b \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
(3)

where ω , a and b are positive real constants.

The system is at time t = 0 in the state

$$|\psi(0)\rangle = \frac{1}{\sqrt{2}}|1\rangle + \frac{1}{2}|2\rangle + \frac{1}{2}|3\rangle.$$
 (4)

- (a) At time t = 0, the energy of the system is measured. What values can be found, and with what probabilities? Calculate for the system in the state $|\psi(0)\rangle$ the mean value $\langle \hat{H} \rangle$ and the root-mean-square deviation $\Delta \hat{H}$.
- (b) Instead of measuring \hat{H} at time t = 0 one measures \hat{A} . What results can be found and with what probabilities? What is the state vector immediately after the measurement?
- (c) Calculate the state vector $|\psi(t)\rangle$ of the system at time t.
- (d) Calculate the mean values $\langle \hat{A} \rangle (t)$ and $\langle \hat{B} \rangle (t)$ of \hat{A} and \hat{B} at time t. What comments can be made?
- (e) What results are obtained if the observable \hat{A} is measured at time t? Same question for the observable \hat{B} .

Problem 3 Free Propagator

The propagator K(x, x', t) for the Hamiltonian \hat{H} is defined through the solution of the Schrödinger equation

$$[i\hbar\partial_t - \hat{H}(p,x)]K(x,x',t) = 0,$$
(5)

with the initial condition $K(x, x', 0) = \delta(x - x')$.

(a) Show that for an arbitrary initial condition $\psi(x, t = 0)$ the solution of the Schrödinger equation is given by

$$\psi(x,t) = \int dx' K(x,x',t) \psi(x',0).$$
 (6)

(b) Show, by using Fourier transformation (plane wave expansion), that the propagator for free particles with $\hat{H} = \hat{p}^2/2m$ is given by

$$K(x, x', t) = \left(\frac{m}{2\pi\hbar i t}\right)^{1/2} \exp\frac{im(x - x')^2}{2\hbar t}.$$
(7)

(c) Consider the following initial condition:

$$\psi(x,0) = A e^{ik_0 x} e^{-\frac{(x-x_0)^2}{4\sigma}}.$$
(8)

- (i) Calculate the norm A.
- (ii) Compute $\psi(x,t)$ using equation (6)
- (iii) Find the expectation values $\langle \hat{x} \rangle$ and $\langle \hat{p} \rangle$.