Problem 10 Coherent States (Oral)

A coherent state of a one dimensional simple harmonic oscillator is defined to be an eigenstate of the non-Hermitian annihilation operator \hat{a} :

$$
\begin{equation*}
\hat{a}|\lambda\rangle=\lambda|\lambda\rangle \tag{1}
\end{equation*}
$$

Where λ is, in general a complex number.
(a) Prove that

$$
\begin{equation*}
|\lambda\rangle=e^{-|\lambda|^{2} / 2} e^{\lambda a^{\dagger}}|0\rangle \tag{2}
\end{equation*}
$$

is a normalized coherent state.
(b) Write $|\lambda\rangle$ as

$$
\begin{equation*}
\lambda=\sum_{n=0}^{\infty} f(n)|n\rangle \tag{3}
\end{equation*}
$$

Show that the distribution of $|f(n)|^{2}$ with respect to n is of the Poissoin form. Find the most probable value of n, hence of E.
(c) Show that a coherent state can also be obtained by applying the translation (finite displacement) operator $e^{i p l / \hbar}$ (where p is the momentum operator and l is the displacement) to the ground state.
(d) Show that the coherent state λ remains coherent under time evolution and calculate the time-evolved state $|\lambda(t)\rangle$ (Hint: directly apply the time-evolution operator.)

Problem 11 Correlation Function (Oral)

Consider a function, known as correlation function defined by

$$
\begin{equation*}
C(t)=\langle x(t) x(0)\rangle \tag{4}
\end{equation*}
$$

where $x(t)$ is the position operator in the Heisenberg picture. Evaluate the correlation function explicitly for the ground state of a one dimensional simple harmonic oscillator.

Problem 12 Translation operator (Written)

Consider the translation operator defined by

$$
\begin{equation*}
\hat{T}(a)|x\rangle=|x+a\rangle, \tag{5}
\end{equation*}
$$

where $|x\rangle$ is the coordinate basis and a a real constant.
(a) Convince yourself that when $\hat{T}(a)$ acts on a wave function we obtain

$$
\begin{equation*}
\hat{T}(a) \psi(x)=\psi(x-a) . \tag{6}
\end{equation*}
$$

(b) Show that the translation operator commutes with the momentum operator.
(c) Show that $\hat{T}(a)$ is a unitary operator, $\hat{T}^{\dagger}(a) \hat{T}(a)=\hat{1}$. What are its eigenvalues and associated eigenvectors? Further show that it is sufficient to know the wave function within an interval of length a only.

