Due: 19/20 November 2015

Problem 14 Perturbed Harmonic Oscillator (Oral)

A harmonic oscillator is subject to the perturbation

$$\hat{V}(t) = \frac{\sqrt{3}}{2} \hbar \omega \Theta(t) (|2\rangle \langle 1| + |1\rangle \langle 2|), \qquad (1)$$

where $\Theta(t)$ is the Heaviside step function. Given that the oscillator is prepared in the state $|n = 2\rangle$ for $t \leq 0$, compute the probability amplitudes of the various unperturbed oscillator states $\langle n|\psi(t)\rangle$ at time t > 0,

- (a) by solving the probability amplitude differential equations directly
 - (*Hint:* It is useful to first scale the differential equations by defining a dimensionless time $\tau = \omega t/2$.)
- (b) by computing the eigenvectors and eigenvalues of the Hamiltonian $\hat{H}_0 + \hat{V}$.
- (c) Make a sketch of the lowest few energy eigenvalues of the system Hamiltonian for t < 0 and t > 0, side by side.

Problem 15 Rotational Motion of a Rigid Body (Written)

Consider a diatomic molecule composed of two identical atoms rotating about its center of mass in a space-fixed coordinate system. For simplicity assume that the distance between the atoms is fixed.¹ The Hamiltonian of the molecule is:

$$\hat{H} = \frac{\hat{\mathbf{L}}^2}{2I},\tag{2}$$

where I is the moment of inertia of the molecule with respect to the rotational axis.

- (a) What are the energy eigenvalues and eigenfunctions of the molecule and what are the degeneracies of the energies? Determine the energy difference between two rotational levels l and l+1.
- (b) Assume the molecule is prepared in the state

$$\psi(\theta,\phi) = A(\cos^2\theta + \sin^2\theta\cos 2\phi),\tag{3}$$

where A is a normalization constant.

- (i) What are the probabilities of measuring the values $6\hbar^2$, $2\hbar^2$ and $0\hbar^2$ for $\hat{\mathbf{L}}^2$?
- (ii) What is the probability of measuring simultaneously the pair $(6\hbar^2, -2\hbar)$ for $\hat{\mathbf{L}}^2$ and \hat{L}_z ?

Hint: Express $\psi(\theta, \phi)$ in terms of the spherical harmonics $Y_{lm}(\theta, \phi)$ and determine A.

¹In the literature such a system is also called a **rigid rotor**.

Problem 16 Spin- $\frac{1}{2}$ in a Magnetic Field (Oral)

A particle with spin 1/2 and magnetic moment μ is placed in a magnetic field

$$\mathbf{B} = B_0 \hat{\mathbf{z}} + B_1 \cos(wt) \hat{\mathbf{x}} - B_1 \sin(wt) \hat{\mathbf{y}}$$
(4)

which is often employed in magnetic resonance experiments.

Assume that the particle has spin up along +z -axis at t = 0 ($m_s = +1/2$). Derive the probability to find the particle with spin down ($m_s = -1/2$) at time t > 0