Problem 20 Spin- $\frac{1}{2}-$ Spin- $\frac{1}{2}$ Coupling (Written)

A system of two spin- $\frac{1}{2}$ particles is described by the effective Hamiltonian

$$
\begin{equation*}
\hat{H}=A \hat{\boldsymbol{S}}_{1} \cdot \hat{\boldsymbol{S}}_{2}+B\left(\hat{S}_{1 z}+\hat{S}_{2 z}\right) \tag{1}
\end{equation*}
$$

where A and B are constants. Find all energy levels of this Hamiltonian.

Problem 21 Positronium Atom (Oral)

The Hamiltonian of the positronium atom in the $1 S$ state ($n=1, l=0$) in a magnetic field \boldsymbol{B} along the z-axis is to a good approximation

$$
\begin{equation*}
\hat{H}=A \hat{\boldsymbol{S}}_{1} \cdot \hat{\boldsymbol{S}}_{2}+\frac{e B}{m c}\left(\hat{S}_{1 z}-\hat{S}_{2 z}\right), \tag{2}
\end{equation*}
$$

if all higher energy states are neglected. The electron is labeled as particle 1 and the positron as particle 2.
(a) Using the coupled representation $\left\{\left|S_{1} S_{2} S M\right\rangle\right\}$ in which $\hat{\boldsymbol{S}}^{2}=\left(\hat{\boldsymbol{S}}_{1}+\hat{\boldsymbol{S}}_{2}\right)^{2}$ and $\hat{S}_{z}=\hat{S}_{1 z}+\hat{S}_{2 z}$ are diagonal, obtain the energy eigenvalues and eigenvectors of the Hamiltonian.
Hint:
(i) One eigenvalue is $E=\frac{1}{4} A \hbar^{2}$.
(ii) You have to express either $\hat{S}_{1 z}$ or $\hat{S}_{2 z}$ in the basis $\left\{\left|S_{1} S_{2} S M\right\rangle\right\}$. To obtain the matrix elements in this basis, write $\left\{\left|S_{1} S_{2} S M\right\rangle\right\}$ in terms of the uncoupled basis $\left\{\left|S_{1} m_{1} S_{2} m_{2}\right\rangle\right\}$ using the Clebsch-Gordan coefficients:

$$
\begin{equation*}
\left|j_{1} j_{2} J M\right\rangle=\sum_{m_{1}, m_{2}}\left\langle j_{1} m_{1} j_{2} m_{2} \mid j_{1} j_{2} J M\right\rangle\left|j_{1} m_{1} j_{2} m_{2}\right\rangle . \tag{3}
\end{equation*}
$$

(b) Now write the Hamiltonian in the uncoupled representation $\left\{\left|S_{1} m_{1} S_{2} m_{2}\right\rangle \equiv\left|S_{1} m_{1}\right\rangle \otimes\right.$ $\left.\left|S_{2} m_{2}\right\rangle\right\}$ and calculate the energy eigenvalues and eigenvectors.
Note: The tensor product of two matrices \hat{A} and \hat{B} is given by

$$
\hat{A} \otimes \hat{B}=\left[\begin{array}{ll}
a_{11} & a_{12} \tag{4}\\
a_{21} & a_{22}
\end{array}\right] \otimes\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=\left[\begin{array}{ll}
a_{11}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] & a_{12}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] \\
a_{21}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right] & a_{22}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
\end{array}\right]
$$

Problem 22 Clebsch-Gordan Coefficients (Written)

Calculate all the Clebsch-Gordan coefficients for $j_{1}=1$ and $j_{2}=1$.

Problem 23 Density Operator (Oral)

In the basis where $\hat{\boldsymbol{\sigma}}_{z}$ is diagonal, three observables are given by

$$
\hat{A}=\left[\begin{array}{cc}
3 & 0 \tag{5}\\
0 & -1
\end{array}\right] \quad \hat{B}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad \hat{C}=\left[\begin{array}{cc}
0 & 2 i \\
-2 i & 0
\end{array}\right]
$$

The system is prepared in a spin state where the expectation values are found to be:

$$
\begin{equation*}
\langle\hat{A}\rangle=2, \quad\langle\hat{B}\rangle=\frac{1}{2}, \quad\langle\hat{C}\rangle=0 \tag{6}
\end{equation*}
$$

(a) Determine the density matrix $\hat{\rho}$ of this spin state.
(b) Is the spin state a pure or mixed state?
(c) What is the probability of measuring $\frac{\hbar}{2}$ for the spin along the z-direction?
(d) Calculate the expectation values $\left\langle\hat{\sigma}_{x}\right\rangle,\left\langle\hat{\sigma}_{y}\right\rangle,\left\langle\hat{\sigma}_{z}\right\rangle$.

