Problem 29 Perturbation (Oral)

The Hamiltonian for an isotropic harmonic oscillator in two dimensions is

\[H = \omega (n_1 + n_2 + 1) \]

where, \(n_i = a_i^\dagger a_i \), with \([a_i, a_j^\dagger] = \delta_{ij}\) and \([a_i, a_j] = 0\)

(a) Work out the commutation relations of the set of operators \(\{H, J_1, J_2, J_3\} \) where,

\[J_1 = \frac{1}{2}(a_2^\dagger a_1 + a_1^\dagger a_2), \quad J_2 = \frac{i}{2}(a_2^\dagger a_1 - a_1^\dagger a_2), \quad J_3 = \frac{1}{2}(a_1^\dagger a_1 - a_2^\dagger a_2) \]

(b) Show that \(J^2 = J_1^2 + J_2^2 + J_3^2 \) and \(J_3 \) form a complete commuting set and write down their eigenvectors and eigenvalues.

(c) Discuss the degeneracy of the spectrum and its splitting due to a small perturbation \(V \cdot J \) where \(V \) is a constant three component vector.

Problem 30 H.O in electric field (Written)

A charged particle is bound in a harmonic oscillator potential \(V = 1/2Kx^2 \). The system is placed in an external electric field \(E \) that is constant in space and time. Calculate the shift of the energy of the ground state to order \(E^2 \).

Problem 31 Rotation Matrices (Oral)

(a) Prove that \(\frac{1}{\sqrt{2}}(1 + i\sigma_x) \) acting on a two-component spinor can be regarded as the matrix representation of the rotation operator about the \(x \)-axis by angle \(-\pi/2\). (The minus sign signifies that the rotation is clockwise.)

(b) Construct the matrix representation of \(\hat{S}_z \) when the eigenkets of \(\hat{S}_y \) are used as base vectors (i.e. in the basis where \(\hat{S}_y \) is diagonal).

Problem 32 Spin-\(\frac{1}{2} \) Particle in a Uniform Magnetic Field (Oral)

An electron is subject to a uniform, time-independent magnetic field of strength \(B \) in the positive \(z \)-direction. At \(t = 0 \) the electron is known to be in an eigenstate of \(\hat{S} \cdot n \) with eigenvalue \(\hbar/2 \), where \(n \) is a unit vector, lying in the \(xz \)-plane making an angle \(\beta \) with the \(z \)-axis.
(a) Obtain the probability for finding the electron in the $s_x = \frac{\hbar}{2}$ state as a function of time.

(b) Find the expectation value of \hat{S}_x as a function of time.

(c) For your own peace of mind show that your answer makes good sense in the extreme cases

$\beta \to 0 \quad \text{and} \quad \beta \to \frac{\pi}{2}$.

Problem 33 Harmonic Oscillator (Written)

Consider a particle subject to a one-dimensional simple harmonic oscillator potential. Suppose at $t = 0$ the state vector is given by

$$e^{i\hat{p}a/\hbar} |0\rangle,$$

where \hat{p} is the momentum operator and a is some number with dimension of length. Using the Heisenberg picture, evaluate the expectation value $\langle \hat{x} \rangle$ for $t > 0$.