Problem 41 Density Operator and Non-interacting Fermions (Oral)

Consider N non-interacting spin- $\frac{1}{2}$ fermions, all with spin-up, occupying the lowest available single particle orbitals in a one-dimensional box with impenetrable walls at $x=0$ and $x=L$. The density operator is given by

$$
\begin{equation*}
\hat{\rho}(x)=\sum_{i=1}^{N} \delta\left(x-\hat{x}_{i}\right) \rightarrow \hat{\psi}^{\dagger}(x) \hat{\psi}(x) \tag{1}
\end{equation*}
$$

in the field theory representation. Show that the average fermion density has N maxima and find their positions.
Note: $\quad \sum_{j=1}^{N} \sin ^{2}(j \theta)=\frac{2 N+1}{4}-\frac{\sin [(2 N+1) \theta]}{4 \sin \theta}$

Problem 42 Number Operator in Second Quantization (Written)

For the normalized multi-particle state

$$
\begin{equation*}
|\psi\rangle=A|1,1,0,1,0,0,0 \ldots\rangle+B|1,1,1,1,0,0,0 \ldots\rangle, \tag{2}
\end{equation*}
$$

written in occupation number representation, compute the expectation value of the particle number operator $\hat{N}=\sum_{k} \hat{a}_{k}^{\dagger} \hat{a}_{k}$ as a function of A.

Problem 43 Two-site Hubbard Model (Oral)

Consider the Hubbard Hamiltonian given by

$$
\begin{equation*}
\hat{H}=-t \sum_{\langle i j\rangle \sigma} \hat{a}_{i \sigma}^{\dagger} \hat{a}_{j \sigma}+U \sum_{i} \hat{a}_{i \uparrow}^{\dagger} \hat{a}_{i \uparrow} \hat{a}_{i \downarrow}^{\dagger} \hat{a}_{i \downarrow}, \tag{3}
\end{equation*}
$$

where $\langle i j\rangle$ indicates that the sum is over nearest neighbors only and $\sigma=\uparrow, \downarrow$. Consider a lattice of only two sites (i.e. $i, j=1,2$).
(a) Assume there is only one spin-up electron occupying either site. Write down all possible configurations $\left\{\left|\sigma_{1}, \sigma_{2}\right\rangle\right\}$, determine the 2×2 Hubbard Hamiltonian in this basis and solve it.
(b) Now suppose there are two electrons in the system. If they have the same spin we obtain $E=0$ (why?). If the electrons have different spins, there will be four different configurations. Write down the 4×4 Hubbard Hamiltonian in this basis and determine the energy eigenstates and eigenvalues.

Write down the eigenstates also in terms of creation operators.

