Modern Topics in Solid-State Theory: Exercise 1.
Polyacetylene
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1. Energy spectrum and symmetries

The Su-Schrieffer-Heeger (SSH) model describes the low-energy electron physics of poly-
acetylene. It is defined on a chain with two sites in the unit cell denoted by A/B. In real
space the Hamiltonian of this model is given by

H= Z [(t + 5t)CTA@'CBz‘ + (t— 5t>CLi+chi +h.c.|, (1)

where 0t parametrizes the dimerization, and c4; describes the electron annihilation oper-
ator on the lattice site (A, 7).
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Figure 1: Dimerization patterns occurring in polyacetylene.

(a) Performa a Fourier transform and show that in momentum space the Hamiltonian
is given by

1= 3 e b ()

Determine the form of h(k).

(b) Show that the Hamiltonian h(k) satisfies the following symmetries

Time-reversal symmetry: uThT(—k’)uTT = +h(k), with ur = oy,
Particle-hole symmetry: uchT(—k)uTC = —h(k), with uc = o3, (2)
Sublattice symmetry: Sh(k) + h(k)S =0, with S = uruc = o3.

Using the sublattice symmetry, show that the energy spectrum of h(k) is symmetric
with respect to zero energy. lLe., show that ¥(—FE) = SU(FE), where ¥ and F are
the eigenfunctions and eigenvalues of h(k), respectively.

(¢) Compute the energy spectrum of model (1) with open boundary conditions by nu-
merically diagonalizing the Hamiltonian. Plot the energy spectrum as a function of
dimerization dt.

(d) Compute the local density of states of the Hamiltonian and show that in the topo-
logical phase there are zero-energy end states.



2. Topological invariant and domain wall states

(a) The winding number is given by

V= i /dk‘ la " Okd] (3)

with q(k) = h(k)/A(k), where A(k) denotes the positive energy eigenvalues and h(k)
is the off-diagonal part of the Hamiltonian. Compute the winding number v as a
function of §t and show that v is non-zero whenever there is a zero-energy end state.

(b) Close to the topological phase transition point, at 6t = 0, the Hamiltonian h(k) can
be expanded around ky = w. Show that this low-energy expansion gives

he(k) = vkoy, + m(z)oy, (4)

with m(x) = 20t and v = (t — t). At a domain wall the mass m(x) changes from
positive to negative, for example m(x) = mg tanh z. Using the wavefunction ansatz
o = ye Jo ™4 derive the form of the domain wall bound state with energy
E=0.

3. Fractional charge (optional)

A charge one-half fraction is bound at domain walls that separate the two different dimer-
ization patterns in polyacetylene (see Fig. 1). To show this, consider the following two
Hamiltonians
het = koy+m(z)o,, lirin m(z) = £my, z eR.
T—r00

hly = ko, +mooy,, (5)

where hg is a reference Hamiltonian that does not have any domain walls (my does not
depend on x). We introduce the two complete sets of orthonormal eigenfunctions

h(e)ff\I/O(Em I) = EO\IJO<E07 JJ), EO S R?

and
hetV(E,z) = EV(E, z), EFeR,

for any x € R. The charge at the domain wall is measured relative to that without the
domain wall,

400 0
o= [ do [ aBp(EL) - B0, (6)
with the charge densities
pO(EOVT) = W%(Eovx)qjo(E07x)v p(E,.QT) = \IIT(E,.T)\IJ(E,[E), (73)
for any x € R.
(a) By numerically diagonalizing a lattice version of the Hamitlonians in Eq. (5) com-
pute the charge () at the domain wall.

(b) Using an analytical derivation, show that the value @) = 1/2 follows from the spectral
symmetry, ¥(—FE) = SU(E), of the Hamiltonian.



