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1. Energy spectrum and symmetries
The Su-Schrieffer-Heeger (SSH) model describes the low-energy electron physics of poly-
acetylene. It is defined on a chain with two sites in the unit cell denoted by A/B. In real
space the Hamiltonian of this model is given by

H =
∑
i

[
(t+ δt)c†AicBi + (t− δt)c†Ai+1cBi + h.c.

]
, (1)

where δt parametrizes the dimerization, and cAi describes the electron annihilation oper-
ator on the lattice site (A, i).

Figure 1: Dimerization patterns occurring in polyacetylene.

(a) Performa a Fourier transform and show that in momentum space the Hamiltonian
is given by

H =
∑
k

(
c†Ak c†Bk

)
h(k)

(
cAk

cBk

)
.

Determine the form of h(k).

(b) Show that the Hamiltonian h(k) satisfies the following symmetries

Time-reversal symmetry: uTh
T (−k)u†T = +h(k), with uT = σ0,

Particle-hole symmetry: uCh
T (−k)u†C = −h(k), with uC = σ3, (2)

Sublattice symmetry: Sh(k) + h(k)S = 0, with S = uTuC = σ3.

Using the sublattice symmetry, show that the energy spectrum of h(k) is symmetric
with respect to zero energy. I.e., show that Ψ(−E) = SΨ(E), where Ψ and E are
the eigenfunctions and eigenvalues of h(k), respectively.

(c) Compute the energy spectrum of model (1) with open boundary conditions by nu-
merically diagonalizing the Hamiltonian. Plot the energy spectrum as a function of
dimerization δt.

(d) Compute the local density of states of the Hamiltonian and show that in the topo-
logical phase there are zero-energy end states.



2. Topological invariant and domain wall states

(a) The winding number is given by

ν =
i

2π

∫
dk
[
q−1∂kq

]
, (3)

with q(k) = ĥ(k)/λ(k), where λ(k) denotes the positive energy eigenvalues and ĥ(k)
is the off-diagonal part of the Hamiltonian. Compute the winding number ν as a
function of δt and show that ν is non-zero whenever there is a zero-energy end state.

(b) Close to the topological phase transition point, at δt = 0, the Hamiltonian h(k) can
be expanded around k0 = π. Show that this low-energy expansion gives

heff(k) = vkσy +m(x)σx, (4)

with m(x) = 2δt and v = (t − δt). At a domain wall the mass m(x) changes from
positive to negative, for example m(x) = m0 tanhx. Using the wavefunction ansatz
ψ0 = χe−

∫ x
0 m(x′)dx′

derive the form of the domain wall bound state with energy
E = 0.

3. Fractional charge (optional)

A charge one-half fraction is bound at domain walls that separate the two different dimer-
ization patterns in polyacetylene (see Fig. 1). To show this, consider the following two
Hamiltonians

heff = kσy +m(x)σx, lim
x→±∞

m(x) = ±m0, x ∈ R.

h0
eff = kσy +m0σx, (5)

where h0 is a reference Hamiltonian that does not have any domain walls (m0 does not
depend on x). We introduce the two complete sets of orthonormal eigenfunctions

h0
effΨ0(E0, x) = E0Ψ0(E0, x), E0 ∈ R,

and
heffΨ(E, x) = EΨ(E, x), E ∈ R,

for any x ∈ R. The charge at the domain wall is measured relative to that without the
domain wall,

Q =

∫ +∞

−∞
dx

∫ 0

−∞
dE [ρ(E, x)− ρ0(E, x)] , (6)

with the charge densities

ρ0(E0, x) = Ψ†0(E0, x)Ψ0(E0, x), ρ(E, x) = Ψ†(E, x)Ψ(E, x), (7a)

for any x ∈ R.

(a) By numerically diagonalizing a lattice version of the Hamitlonians in Eq. (5) com-
pute the charge Q at the domain wall.

(b) Using an analytical derivation, show that the valueQ = 1/2 follows from the spectral
symmetry, Ψ(−E) = SΨ(E), of the Hamiltonian.


