Modern Topics in Solid-State Theory: Topological insulators and superconductors

Andreas P. Schnyder

Max-Planck-Institut für Festkörperforschung, Stuttgart

Universität Stuttgart

January 2016

Lecture Two: Chern insulator & Quantum spin Hall state

1. Chern insulator and IQHE

- Integer quantum Hall effect
- Chern insulator on square lattice
- Topological invariant

2. Quantum spin Hall state

- Time reversal symmetry
- QSH state on square lattice
- Z₂ surface invariant & Z₂ bulk invariant

The Integer Quantum Hall State

Integer Quantum Hall State:

First example of 2D topological material

[von Klitzing '80]

The Integer Quantum Hall State

What causes the precise quantization in IQHE?

Explanation One: Edge state transport

IQHE has an energy gap in the bulk:

- charge cannot flow in bulk; only along 1D channels at edges (chiral edge states) $\frac{-\sigma}{2}$
- chiral edge state cannot be localized by disorder (no backscattering)
- edge states are perfect charge conductor!

Explanation Two: Topological band theory

Distinction between the integer quantum Hall state and a conventional insulator $H_{\overline{a}} - iv(\sigma_{a} + \sigma_{a}) + m(y)\sigma_{z}$ is a topological property of the band structure **[Thouless et al, 84]**

$$\begin{array}{ccc} \mathcal{H}(\mathbf{k}) : & \text{Brillouin zone} & & & \text{Hamiltonians with energy gap} \\ \text{Classified by Chern number:} & n = \frac{i}{2\pi} \sum_{\substack{\text{filled} \\ \text{states}}} \int \mathcal{F} d^2 k & (= \text{topological invariant}) & n \in \mathbb{Z} \\ \end{array} \\ \hline \\ \text{Kubo formula:} & \sigma_{xy} = \frac{e^2}{h} \frac{i}{2\pi} \sum_{\substack{\text{filled} \\ \text{states}}} \int \mathcal{F} d^2 k \end{array}$$

does not change under smooth deformations, as long as bulk energy gap is not closed

Bulk-boundary correspondence

topological invariant

$$n = \frac{i}{2\pi} \sum_{\substack{\text{filled}\\\text{states}}} \int \mathcal{F} d^2 k$$

 $n \in \mathbb{Z}$

Zero-energy state at interface

Bulk-boundary correspondence:

Zero-energy states must exist at the interface between two different topological phases

Follows from the quantization of the topological invariant.

 $\Delta n = |n_{
m L} - n_{
m R}|\;$ = number or edge modes

Stable gapless edge states:

- robust to smooth deformations (respect symmetries of the system)
- insensitive to disorder, impossible to localize
- cannot exist in a purely 1D system (Fermion doubling theorem)

IQHE: chiral Dirac Fermion

Mapping

Chern insulator ("integer quantum Hall state on a lattice")

Chern insulator on square lattice

Chern insulator on square lattice: $\mathcal{H}_{CI} = \mathbf{d}(\mathbf{k}) \cdot \vec{\sigma} + \epsilon_0(\mathbf{k})\sigma_0$

 $d_x(\mathbf{k}) = \sin k_x \qquad d_y(\mathbf{k}) = \sin k_y \qquad d_z(\mathbf{k}) = (2 + M - \cos k_x - \cos k_y)$

Effective low-energy continuum theory for M=0: (expand around $\mathbf{k} = 0$; σ_0 term can be neglected)

$$H_{\rm CI} = k_x \sigma_x + k_y \sigma_y + M \sigma_z$$

two eigenfunctions with energies: $E_{\pm} = \pm \lambda = \pm \sqrt{\mathbf{k}^2 + M^2}$

$$\left|u_{\mathbf{k}}^{+}\right\rangle = \frac{1}{\sqrt{2\lambda(\lambda - M)}} \begin{pmatrix}k_{x} - ik_{y}\\\lambda - M\end{pmatrix} \qquad \left|u_{\mathbf{k}}^{-}\right\rangle = \frac{1}{\sqrt{2\lambda(\lambda + M)}} \begin{pmatrix}-k_{x} + ik_{y}\\\lambda + M\end{pmatrix}$$

Berry curvature: $F_{xy} = \partial_{k_x} A_{k_y} - \partial_{k_y} A_{k_x} = +\frac{1}{2\lambda^3}$ gives nonzero Chern number (= Hall conductance σ_{xy}) $n = \frac{1}{2\pi} \int d^2k F_{xy} = \frac{1}{2} \operatorname{sgn}(M)$

zero-energy state at boundary

n = 1

NB: Chern number must be integer for integrals over compact manifolds. Proper regularization of Dirac Hamiltonian will lead to $n \in \mathbb{Z}$ n = 0

Chiral edge state at boundary between $\psi_0 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{ik_y y} e^{-\int_0^x M(x') dx'}$ two Chern insulators with different n

Experimental realisation of Chern insulator

Cr-doped (Bi,Sb)₂Te₃

Thin layer of topological insulator, which has helical surface states

 States on top surface are gapped out by finite size quantization

Time-reversal symmetry is broken by magnetic ad-atoms (Cr or V)

Fig. 3. The QAH effect under strong magnetic field measured at 30 mK. (A) Magnetic field dependence of ρ_{yx} at V_g^0 . (B) Magnetic field dependence of ρ_{xx} at V_g^0 . The blue and red lines in (A) and (B) indicate the data taken with increasing and decreasing fields, respectively.

[Chang et al. Science '13]

Quantum spin Hall state

[picture courtesy S. Zhang et al.]

Time-reversal symmetry & Kramers theorem

Presence of time-reversal symmetry gives rise to new topological invariants [Kane-Mele, PRL 05]

$$\Theta: \quad t \to -t, \quad \mathbf{k} \to -\mathbf{k}, \quad \hat{S}^{\mu} \to -\hat{S}^{\mu}$$

Time-reversal symmetry implemented by anti-unitary operator:

$$\Theta = U_{\rm T} \mathcal{K} = e^{i\pi \hat{S}^y/\hbar} \mathcal{K} \checkmark \qquad \text{complex conjugation operator} \qquad \Theta \psi = e^{i\pi \hat{S}^y/\hbar} \psi^*$$

For quadratic Hamiltonians in momentum space:

$$\Theta \mathcal{H}(\mathbf{k})\Theta^{-1} = +\mathcal{H}(-\mathbf{k})$$

For spin-
$$\frac{1}{2}$$
 particles: $\Theta^2 = -1$ $U_{\rm T} = -U_{\rm T}^T$ $\Theta = i\sigma_y \mathcal{K}$ $\Theta \begin{pmatrix} \psi_{\uparrow} \\ \psi_{\downarrow} \end{pmatrix} = \begin{pmatrix} \psi_{\downarrow}^* \\ -\psi_{\uparrow}^* \end{pmatrix}$

Kramers theorem (for spin-1/2 particles): $\Theta^2 = -1 \Rightarrow \langle \psi | \Theta \psi \rangle = -\langle \psi | \Theta \psi \rangle = 0$

- \Rightarrow all eigenstates are at least two-fold degenerate
- \Rightarrow for Bloch functions in k-space:

 $|u(\mathbf{k})\rangle$ and $|u(-\mathbf{k})\rangle$ have same energy; degeneracy at TRI momenta

Consequences for edge states:

- states at time-reversal invariant momenta are degenerate
- crossing of edge states is protected
- absence of backscattering from non-magnetic impurities

Time-reversal-invariant topological insulator

2D topological insulator

[Bernevig, Hughes, Zhang 2006]

lattice momentum

[Kane-Mele, PRL 05]

(also known as Quantum Spin Hall insulator)

2D Bloch Hamiltonians in the presence of time-reversal symmetry:

Bulk energy gap but gapless edge: Spin filtered edge states

- protected by time-reversal symmetry
- half an ordinary 1D electron gas
- is realized in certain band insulators with strong spin-orbit coupling

TRI topological insulator: HgTe quantum wells

TRI topological insulator: HgTe quantum wells

observed in HgTe/(Hg,Cd) quantum wells

[M. Koenig, Buhmann, Mohlenkamp, et al., Science 2007]

Measured conductance: $2e^2/h$ for short samples L < L_{mag}, L_{IS} (two terminal conductance)

Helical edge states are unique 1D electron conductor

- spin and momentum are locked
- no elastic backscattering from non-magnetic impurities
- perfect spin conductor!

2D topological insulator: Edge Z₂ invariant

[Kane Mele 05]

Time-reversal invariant insulators with $\Theta^2 = -1$ are classified by a **Z**₂ topological invariant ($\nu = 0,1$)

This can be understood via the bulk-boundary correspondence:

 \Rightarrow consider edge states in half of the edge Brillouin zone (other half is related by TRS)

Edge Z₂ invariant distinguishes between even / odd number of Kramers pairs of edge states

[after Hasan & Kane, RMP 2010]

2D topological insulator: First bulk Z₂ invariant

Bulk Z₂ **invariant** as an obstruction to define a "TR-smooth gauge":

- $|u_n^{(1)}(\mathbf{k})\rangle$ and $|u_n^{(2)}(\mathbf{k})\rangle$ denote gauge choices in the two EBZs - TR-smooth gauge: $|u_n^{(1)}(-\mathbf{k})\rangle = \Theta |u_n^{(2)}(\mathbf{k})\rangle$
- \Rightarrow consider anti-symmetric "t-*matrix":*

antisymmetry property: $t^{\mathrm{T}}(\mathbf{k}) = -t(\mathbf{k})$

- \Rightarrow Pfaffian can be defined: $Pf[t(\mathbf{k})]$
- > Zeroes of $Pf[t(\mathbf{k})]$ occur in isolated points, carry phase winding

Due to time-reversal symmetry:

- (i) $|Pf[t(\mathbf{k})]| = |Pf[t(-\mathbf{k})]| \Rightarrow$ zeros come in pairs
- (ii) At TRI momenta Λ_a we have $|Pf[t(\Lambda_a)]| = 1$ \Rightarrow zeros cannot be brought to TRI momenta

$$t_{mn}(\mathbf{k}) = \left\langle u_m^{-}(\mathbf{k}) \right| \Theta \left| u_n^{-}(\mathbf{k}) \right\rangle$$

e.g.:
$$\operatorname{Pf} \begin{pmatrix} 0 & z \\ -z & 0 \end{pmatrix} = z$$
 $(\operatorname{Pf} [\omega(\Lambda_a)])^2 = \det [\omega(\Lambda_a)]$

[Fu and Kane]

2D topological insulator: First bulk Z2 invariant Kamer Merel Aleptological antantant

2D topological insulator: Second bulk Z₂ invariant

Bulk Z₂ invariant as an obstruction to define a "TR-smooth gauge":

- $|u_n^{(1)}(\mathbf{k})\rangle$ and $|u_n^{(2)}(\mathbf{k})\rangle$ denote gauge choices in the two EBZs - TR-smooth gauge: $|u_n^{(1)}(-\mathbf{k})\rangle = \Theta |u_n^{(2)}(\mathbf{k})\rangle$
- $= |\mathbf{u}_n^* (-\mathbf{k})\rangle = \Theta |u_n^* (\mathbf{k})\rangle$
- \Rightarrow consider unitary *sewing matrix*:

$$\omega_{mn}(\mathbf{k}) = \langle u_m^-(-\mathbf{k}) | \Theta | u_n^-(\mathbf{k}) \rangle$$

antisymmetry property: $\omega^T(\mathbf{k}) = -\omega(-\mathbf{k})$

at TRI momenta: $\Lambda_a = -\Lambda_a \Rightarrow \omega^T(\Lambda_a) = -\omega(\Lambda_a)$ is antisymmetric

$$(\Pr\left[\omega(\Lambda_a)\right])^2 = \det\left[\omega(\Lambda_a)\right]$$

Bulk Z₂ invariant (ν = 0,1):

$$(-1)^{\nu} = \prod_{a=1}^{4} \frac{\operatorname{Pf}\left[\omega(\Lambda_{a})\right]}{\sqrt{\det\left[\omega(\Lambda_{a})\right]}} = \pm 1$$

(gauge invariant, but smooth gauge needed)

It follows from **bulk-boundary correspondence**: edge Z₂ invariant = bulk Z₂ invariant

[Kane Mele 05] [Fu and Kane]

2D topological insulator: Bulk Z₂ invariants

Three equivalent definitions for bulk Z₂ topological invariant:

(A) in terms of sewing matrix:

$$(-1)^{\nu} = \prod_{a=1}^{4} \frac{\Pr\left[\omega(\Lambda_a)\right]}{\sqrt{\det\left[\omega(\Lambda_a)\right]}} = \pm 1$$

(gauge invariant, but smooth gauge needed)

sewing matrix: $\omega_{mn}(\mathbf{k}) = \langle u_m^-(-\mathbf{k}) | \Theta | u_n^-(\mathbf{k}) \rangle$

(is unitary, and antisymmetric at TRI momenta)

(B) count number of zeroes of $Pf\left[\langle u_m^-(\mathbf{k})|\Theta|u_n^-(\mathbf{k})\right]$ in EBZ

$$I = \frac{1}{2\pi i} \int_{\partial(\text{EBZ})} d\mathbf{k} \cdot \nabla \log \left(\Pr\left[\langle u_m^-(\mathbf{k}) | \Theta | u_n^-(\mathbf{k}) \right] \right) \mod 2$$
(antisymmetric at all momenta.)

(antisymmetric at all momen but not unitary)

(C) in terms of Berry connection:

$$\nu = \frac{1}{2\pi} \left[\oint_{\partial(EBZ)} d\mathbf{k} \cdot \mathcal{A} - \int_{EBZ} d^2 \mathbf{k} \,\mathcal{F} \right] \mod 2$$

