Modern Topics in Solid-State Theory: Topological insulators and superconductors

Andreas P. Schnyder

Max-Planck-Institut für Festkörperforschung, Stuttgart

Universität Stuttgart
January 2016

Lecture Two: Chern insulator \& Quantum spin Hall state

1. Chern insulator and IQHE

- Integer quantum Hall effect
- Chern insulator on square lattice
- Topological invariant

2. Quantum spin Hall state

- Time reversal symmetry
- QSH state on square lattice
- Z_{2} surface invariant \& Z_{2} bulk invariant

The Integer Quantum Hall State

Integer Quantum Hall State:

First example of 2D topological material

- 2D electron gas in large magnetic field, at low T

2D cyclotron motion Landau levels

- There is an energy gap, but it is not an insulator $P_{x x}$
$>$ Quantized Hall conductivity: $\quad J_{y}=\sigma_{x y} E_{x} \quad \mathrm{k} \Omega / \mathrm{sq}$

- Plateaus in resistivity

$$
\sigma_{x y}=n \frac{e^{2}}{h} \quad n \in \mathbb{Z}
$$

$$
\rho_{x y}=\frac{1}{n} \frac{h}{e^{2}}
$$

The Integer Quantum Hall State

What causes the precise quantization in IQHE?

Explanation One: Edge state transport
IQHE has an energy gap in the bulk:

- charge cannot flow in bulk; only along 1D channels at edges (chiral edge states)
- chiral edge state cannot be localized by disorder (no backscattering)
- edge states are perfect charge conductor!

Explanation Two: Topological band theory

Distinction between the integer quantum Hall state and a conventional insulator is a topological property of the band structure [Thouless et al, 84]
$\mathcal{H}(\mathbf{k}): \quad$ Brillouin zone \quad Hamiltonians with energy gap
Classified by Chern number: $n=\frac{i}{2 \pi} \sum_{\substack{\text { filled } \\ \text { states }}} \int \mathcal{F} d^{2} k \quad(=$ topological invariant) $\quad n \in \mathbb{Z}$

$$
\text { Kubo formula: } \quad \sigma_{x y}=\frac{e^{2}}{h} \frac{i}{2 \pi} \sum_{\substack{\text { filled } \\ \text { states }}} \int \mathcal{F} d^{2} k
$$

Bulk-boundary correspondence

topological invariant $\quad n=\frac{i}{2 \pi} \sum_{\substack{\text { filled } \\ \text { states }}} \int \mathcal{F} d^{2} k \quad n \in \mathbb{Z}$
Bulk-boundary correspondence:
Zero-energy states must exist at the interface between two different topological phases

Follows from the quantization of the topological invariant.

$$
\Delta n=\left|n_{\mathrm{L}}-n_{\mathrm{R}}\right|=\text { number or edge modes }
$$

Stable gapless edge states:

- robust to smooth deformations (respect symmetries of the system)
- insensitive to disorder, impossible to localize
- cannot exist in a purely 1D system (Fermion doubling theorem)

IQHE: chiral Dirac Fermion

Chern insulator ("integer quantum Hall state on a lattice")

Experimental realization: Cr -doped $(\mathrm{Bi}, \mathrm{Sb})_{2} \mathrm{Te}_{3}$
[D. Haldane PRL '88] [Chang et al. Science '13] Tight-binding model: $\quad H_{\mathrm{CI}}=\left(\begin{array}{cc}c_{s, \mathbf{k}}^{\dagger} & c_{p, \mathbf{k}}^{\dagger}\end{array}\right) \mathcal{H}_{\mathrm{CI}}\binom{c_{s, \mathbf{k}}}{c_{p, \mathbf{k}}} \quad \mathcal{H}_{\mathrm{CI}}=\mathbf{d}(\mathbf{k}) \cdot \vec{\sigma}+\epsilon_{0}(\mathbf{k}) \sigma_{0}$

$$
d_{x}(\mathbf{k})=\sin k_{x} \quad d_{y}(\mathbf{k})=\sin k_{y} \quad d_{z}(\mathbf{k})=\left(2+M-\cos k_{x}-\cos k_{y}\right)
$$

$E_{ \pm}= \pm|\mathbf{d}(\mathbf{k})| \quad$ Spectrum flattening: $\quad \hat{\mathbf{d}}(\mathbf{k})=\frac{\mathbf{d}(\mathbf{k})}{|\mathbf{d}(\mathbf{k})|}$

no edge state

chiral edge state

chiral edge state

Chern number: $n_{\mathbb{Z}}=\frac{1}{8 \pi} \int_{\mathrm{BZ}} d^{2} \mathbf{k} \epsilon^{\mu \nu} \hat{\mathbf{d}} \cdot\left[\partial_{k_{\mu}} \hat{\mathbf{d}} \times \partial_{k_{\nu}} \hat{\mathbf{d}}\right] \quad$ quantized Hall effect $\sigma_{x y}=\frac{e^{2}}{h} n$

Mapping $\quad \hat{\mathbf{d}}(\mathbf{k})$: Brillouin zone

$" \pi_{2}\left(S^{2}\right)=\mathbb{Z} "$

Chern insulator ("integer quantum Hall state on a lattice")

Experimental realization: Cr -doped $(\mathrm{Bi}, \mathrm{Sb})_{2} \mathrm{Te}_{3}$
[D. Haldane PRL '88] [Chang et al. Science '13]
Tight-binding model: $\quad H_{\mathrm{CI}}=\left(\begin{array}{cc}c_{s, \mathbf{k}}^{\dagger} & c_{p, \mathbf{k}}^{\dagger}\end{array}\right) \mathcal{H}_{\mathrm{CI}}\binom{c_{s, \mathbf{k}}}{c_{p, \mathbf{k}}} \quad \mathcal{H}_{\mathrm{CI}}=\mathbf{d}(\mathbf{k}) \cdot \vec{\sigma}+\epsilon_{0}(\mathbf{k}) \sigma_{0}$

$$
d_{x}(\mathbf{k})=\sin k_{x} \quad d_{y}(\mathbf{k})=\sin k_{y} \quad d_{z}(\mathbf{k})=\left(2+M-\cos k_{x}-\cos k_{y}\right)
$$

$$
E_{ \pm}= \pm|\mathbf{d}(\mathbf{k})| \quad \text { Spectrum flattening: } \quad \hat{\mathbf{d}}(\mathbf{k})=\frac{\mathbf{d}(\mathbf{k})}{|\mathbf{d}(\mathbf{k})|}
$$

Texture of unit vector $\hat{\mathbf{d}}(\mathbf{k})$

chiral edge state

Chern number: $\quad n_{\mathbb{Z}}=\frac{1}{8 \pi} \int_{\mathrm{BZ}} d^{2} \mathbf{k} \epsilon^{\mu \nu} \hat{\mathbf{d}} \cdot\left[\partial_{k_{\mu}} \hat{\mathbf{d}} \times \partial_{k_{\nu}} \hat{\mathbf{d}}\right]$

Chern insulator on square lattice

Chern insulator on square lattice: $\mathcal{H}_{\mathrm{CI}}=\mathbf{d}(\mathbf{k}) \cdot \vec{\sigma}+\epsilon_{0}(\mathbf{k}) \sigma_{0}$

$$
d_{x}(\mathbf{k})=\sin k_{x} \quad d_{y}(\mathbf{k})=\sin k_{y} \quad d_{z}(\mathbf{k})=\left(2+M-\cos k_{x}-\cos k_{y}\right)
$$

Effective low-energy continuum theory for $\mathrm{M}=0$: (expand around $\mathbf{k}=0 ; \sigma_{0}$ term can be neglected)

$$
H_{\mathrm{CI}}=k_{x} \sigma_{x}+k_{y} \sigma_{y}+M \sigma_{z}
$$

two eigenfunctions with energies: $\quad E_{ \pm}= \pm \lambda= \pm \sqrt{\mathbf{k}^{2}+M^{2}}$

$$
\left|u_{\mathbf{k}}^{+}\right\rangle=\frac{1}{\sqrt{2 \lambda(\lambda-M)}}\binom{k_{x}-i k_{y}}{\lambda-M} \quad\left|u_{\mathbf{k}}^{-}\right\rangle=\frac{1}{\sqrt{2 \lambda(\lambda+M)}}\binom{-k_{x}+i k_{y}}{\lambda+M}
$$

Berry curvature: $F_{x y}=\partial_{k_{x}} A_{k_{y}}-\partial_{k_{y}} A_{k_{x}}=+\frac{M}{2 \lambda^{3}}$
gives nonzero Chern number (= Hall conductance $\sigma_{x y}$)

$$
n=\frac{1}{2 \pi} \int d^{2} k F_{x y}=\frac{1}{2} \operatorname{sgn}(M)
$$

NB: Chern number must be integer for integrals over compact manifolds. Proper regularization of Dirac Hamiltonian will lead to $n \in \mathbb{Z}$

Chiral edge state at boundary between two Chern insulators with different n

$$
\psi_{0}=\frac{1}{\sqrt{2}}\binom{1}{-1} e^{i k_{y} y} e^{-\int_{0}^{x} M\left(x^{\prime}\right) d x^{\prime}}
$$

Experimental realisation of Chern insulator

- Cr-doped (Bi,Sb) ${ }_{2} \mathrm{Te}_{3}$
[Chang et al. Science '13]
- Thin layer of topological insulator, which has helical surface states
- States on top surface are gapped out by finite size quantization
- Time-reversal symmetry is broken by magnetic ad-atoms (Cr or V)

Fig. 3. The QAH effect under strong magnetic field measured at $\mathbf{3 0} \mathbf{m K}$. (A) Magnetic field dependence of $\rho_{y x}$ at V_{g}^{0}. (B) Magnetic field dependence of $\rho_{x x}$ at V_{g}^{0}. The blue and red lines in (A) and (B) indicate the data taken with increasing and decreasing fields, respectively.

Quantum spin Hall state

Time-reversal symmetry \& Kramers theorem

Presence of time-reversal symmetry gives rise to new topological invariants [Kane-Mele, PRL 05]

$$
\Theta: \quad t \rightarrow-t, \quad \mathbf{k} \rightarrow-\mathbf{k}, \quad \hat{S}^{\mu} \rightarrow-\hat{S}^{\mu}
$$

Time-reversal symmetry implemented by anti-unitary operator:

$$
\Theta=U_{\mathrm{T}} \mathcal{K}=e^{i \pi \hat{S}^{y} / \hbar} \mathcal{K} \longleftarrow \begin{gathered}
\text { complex conju- } \\
\text { gation operator }
\end{gathered} \quad \Theta \psi=e^{i \pi \hat{S}^{y} / \hbar} \psi^{*}
$$

For quadratic Hamiltonians in momentum space: $\quad \Theta \mathcal{H}(\mathbf{k}) \Theta^{-1}=+\mathcal{H}(-\mathbf{k})$
For spin- $\frac{1}{2}$ particles:

$$
\Theta^{2}=-1 \quad U_{\mathrm{T}}=-U_{\mathrm{T}}^{T}
$$

$\Theta=i \sigma_{y} \mathcal{K}$
$\Theta\binom{\psi_{\uparrow}}{\psi_{\downarrow}}=\binom{\psi_{\downarrow}^{*}}{-\psi_{\uparrow}^{*}}$

Kramers theorem (for spin-1/2 particles): $\quad \Theta^{2}=-1 \quad \Rightarrow\langle\psi \mid \Theta \psi\rangle=-\langle\psi \mid \Theta \psi\rangle=0$

\Rightarrow all eigenstates are at least two-fold degenerate

\Rightarrow for Bloch functions in k-space:

$$
|u(\mathbf{k})\rangle \text { and }|u(-\mathbf{k})\rangle \text { have same energy; degeneracy at TRI momenta }
$$

Consequences for edge states:

- states at time-reversal invariant momenta are degenerate
- crossing of edge states is protected
- absence of backscattering from non-magnetic impurities

Time-reversal-invariant topological insulator

2D topological insulator (also known as Quantum Spin Hall insulator)
[Bernevig, Hughes, Zhang 2006]
[Kane-Mele, PRL 05]

2D Bloch Hamiltonians in the presence of time-reversal symmetry:

$$
\Theta \mathcal{H}(\mathbf{k}) \Theta^{-1}=+\mathcal{H}(-\mathbf{k}) \quad \Theta=i \sigma_{y} \otimes \mathbb{1} \mathcal{K} \quad \Theta^{2}=-1
$$

Simplest model:
(Chern insulator) ${ }^{2}$

$$
\mathcal{H}\left(k_{x}, k_{y}\right)=\left(\begin{array}{cc}
H_{\uparrow} & 0 \\
0 & H_{\downarrow}
\end{array}\right)=\left(\begin{array}{c}
H_{\mathrm{CI}}(\mathbf{k}) \\
0
\end{array}\right.
$$

$$
\left.\begin{array}{c}
0 \\
H_{\mathrm{CI}}^{*}(-\mathbf{k})
\end{array}\right)
$$

S^{2} is conserved

edge band structure:

Bulk energy gap but gapless edge: Spin filtered edge states

- protected by time-reversal symmetry
- half an ordinary 1D electron gas
- is realized in certain band insulators with strong spin-orbit coupling

TRI topological insulator: HgTe quantum wells

$>$ observed in $\mathrm{HgTe} /(\mathrm{Hg}, \mathrm{Cd})$ quantum wells
[Bernevig, Hughes, Zhang Science 2006]
[M. Koenig, Buhmann,
Mohlenkamp, et al., Science 2007]

$\mathrm{d}<6.3 \mathrm{~nm}$: Normal band order
$d>6.3 \mathrm{~nm}$: Inverted band order
 transition
$\nu=0$: conventional insulator

$\nu=1$: topological insulator

TRI topological insulator: HgTe quantum wells

[M. Koenig, Buhmann,

- observed in $\mathrm{HgTe} /(\mathrm{Hg}, \mathrm{Cd})$ quantum wells

Mohlenkamp, et al., Science 2007]

Measured conductance: $2 e^{2} / h$ for short samples $L<L_{m a g}, L_{\text {is }}$ (two terminal conductance)

Helical edge states are unique 1D electron conductor

- spin and momentum are locked
- no elastic backscattering from non-magnetic impurities
- perfect spin conductor!

2D topological insulator: Edge \mathbf{Z}_{2} invariant

Time-reversal invariant insulators with $\Theta^{2}=-1$ are classified by a Z_{2} topological invariant ($\nu=0,1$)
[Kane Mele 05]

$$
\Theta \mathcal{H}(\mathbf{k}) \Theta^{-1}=+\mathcal{H}(-\mathbf{k})
$$

This can be understood via the bulk-boundary correspondence:
\Rightarrow consider edge states in half of the edge Brillouin zone (other half is related by TRS)

Edge \mathbf{Z}_{2} invariant:

$$
\nu=0: \text { conventional insulator }
$$

$\nu=1$: topological insulator

Edge Z_{2} invariant distinguishes between even / odd number of Kramers pairs of edge states

2D topological insulator: First bulk Z_{2} invariant

Bulk Z_{2} invariant as an obstruction to define a "TR-smooth gauge":
[Kane Mele 05]
[Fu and Kane]
$-\left|u_{n}^{(1)}(\mathbf{k})\right\rangle$ and $\left|u_{n}^{(2)}(\mathbf{k})\right\rangle$ denote gauge choices in the two EBZs

- TR-smooth gauge: $\left|u_{n}^{(1)}(-\mathbf{k})\right\rangle=\Theta\left|u_{n}^{(2)}(\mathbf{k})\right\rangle$
\Rightarrow consider anti-symmetric "t-matrix":

$$
t_{m n}(\mathbf{k})=\left\langle u_{m}^{-}(\mathbf{k})\right| \Theta\left|u_{n}^{-}(\mathbf{k})\right\rangle
$$

antisymmetry property: $\quad t^{\mathrm{T}}(\mathbf{k})=-t(\mathbf{k})$
\Rightarrow Pfaffian can be defined: $\operatorname{Pf}[t(\mathbf{k})]$
e.g.: $\operatorname{Pf}\left(\begin{array}{cc}0 & z \\ -z & 0\end{array}\right)=z$
$\left(\operatorname{Pf}\left[\omega\left(\Lambda_{a}\right)\right]\right)^{2}$
$=\operatorname{det}\left[\omega\left(\Lambda_{a}\right)\right]$
$>$ Zeroes of $\operatorname{Pf}[t(\mathbf{k})]$ occur in isolated points, carry phase winding
$>$ Due to time-reversal symmetry:
(i) $|\operatorname{Pf}[t(\mathbf{k})]|=|\operatorname{Pf}[t(-\mathbf{k})]| \Rightarrow$ zeros come in pairs
(ii) At TRI momenta Λ_{a} we have $\left|\operatorname{Pf}\left[t\left(\Lambda_{a}\right)\right]\right|=1$

\Rightarrow zeros cannot be brought to TRI momenta

2D topological insulator: First bulk Z_{2} invariant

Topological invariant $=$ number or zeros of $\operatorname{Pf}[t(\mathbf{k})]$ in EBZ modulo 2
conventional insulator

topological insulator

$$
I=\frac{1}{2 \pi i} \int_{\partial(\mathrm{EBZ})} d \mathbf{k} \cdot \nabla \log \left(\operatorname{Pf}\left[\left\langle u_{m}^{-}(\mathbf{k})\right| \Theta \mid u_{n}^{-}(\mathbf{k})\right]\right) \quad \bmod 2
$$

It follows from bulk-boundary correspondence: edge Z_{2} invariant $=$ bulk Z_{2} invariant

2D topological insulator: Second bulk \mathbf{Z}_{2} invariant

Bulk Z_{2} invariant as an obstruction to define a "TR-smooth gauge":
[Kane Mele 05]
[Fu and Kane]
$-\left|u_{n}^{(1)}(\mathbf{k})\right\rangle$ and $\left|u_{n}^{(2)}(\mathbf{k})\right\rangle$ denote gauge choices in the two EBZs

- TR-smooth gauge: $\left|u_{n}^{(1)}(-\mathbf{k})\right\rangle=\Theta\left|u_{n}^{(2)}(\mathbf{k})\right\rangle$
\Rightarrow consider unitary sewing matrix:

$$
\omega_{m n}(\mathbf{k})=\left\langle u_{m}^{-}(-\mathbf{k})\right| \Theta\left|u_{n}^{-}(\mathbf{k})\right\rangle
$$

antisymmetry property: $\quad \omega^{T}(\mathbf{k})=-\omega(-\mathbf{k})$
at TRI momenta: $\Lambda_{a}=-\Lambda_{a} \Rightarrow \omega^{T}\left(\Lambda_{a}\right)=-\omega\left(\Lambda_{a}\right)$ is antisymmetric

$\left(\operatorname{Pf}\left[\omega\left(\Lambda_{a}\right)\right]\right)^{2}$ $=\operatorname{det}\left[\omega\left(\Lambda_{a}\right)\right]$

Bulk Z_{2} invariant $(\nu=0,1): \quad(-1)^{\nu}=\prod_{a=1}^{4} \frac{\operatorname{Pf}\left[\omega\left(\Lambda_{a}\right)\right]}{\sqrt{\operatorname{det}\left[\omega\left(\Lambda_{a}\right)\right]}}= \pm 1 \begin{aligned} & \begin{array}{l}\text { (gauge invariant, } \\ \text { but smooth } \\ \text { gauge needed) }\end{array}\end{aligned}$

It follows from bulk-boundary correspondence: edge Z_{2} invariant $=$ bulk Z_{2} invariant

2D topological insulator: Bulk Z_{2} invariants

Three equivalent definitions for bulk \mathbf{Z}_{2} topological invariant:
(A) in terms of sewing matrix:

$$
(-1)^{\nu}=\prod_{a=1}^{4} \frac{\operatorname{Pf}\left[\omega\left(\Lambda_{a}\right)\right]}{\sqrt{\operatorname{det}\left[\omega\left(\Lambda_{a}\right)\right]}}= \pm 1
$$

(gauge invariant, but smooth
gauge needed)
sewing matrix: $\quad \omega_{m n}(\mathbf{k})=\left\langle u_{m}^{-}(-\mathbf{k})\right| \Theta\left|u_{n}^{-}(\mathbf{k})\right\rangle$
(is unitary, and antisymmetric at TRI momenta)
(B) count number of zeroes of $\operatorname{Pf}\left[\left\langle u_{m}^{-}(\mathbf{k})\right| \Theta \mid u_{n}^{-}(\mathbf{k})\right] \quad$ in EBZ

$$
I=\frac{1}{2 \pi i} \int_{\partial(\mathrm{EBZ})} d \mathbf{k} \cdot \nabla \log (\underbrace{\operatorname{Pf}[\underbrace{u^{\prime}}_{u_{m}^{-}(\mathbf{k})|\Theta| u_{n}^{-}(\mathbf{k}})}_{\begin{array}{c}
\text { (antisymmetric at all momenta, } \\
\text { but not unitary) }
\end{array}}] \bmod 2
$$

(C) in terms of Berry connection:

$$
\nu=\frac{1}{2 \pi}\left[\oint_{\partial(E B Z)} d \boldsymbol{k} \cdot \mathcal{A}-\int_{\mathrm{EBZ}} d^{2} \boldsymbol{k} \mathcal{F}\right] \bmod 2
$$

