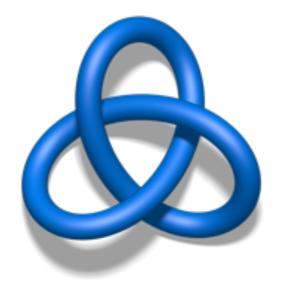
Modern Topics in Solid-State Theory: Topological insulators and superconductors

Andreas P. Schnyder

Max-Planck-Institut für Festkörperforschung, Stuttgart



Universität Stuttgart

January 2016

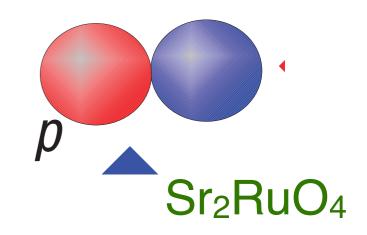
Lecture Three: Topological superconductors

1. Topological insulators

- Z₂ bulk invariants
- Three-dimensional topological insulator

2. Topological superconductors

- Topological SCs in 1D: Kitaev model
- Topological SCs in 2D: chiral p-wave SC



2D topological insulator: First bulk Z₂ invariant

Bulk Z₂ **invariant** as an obstruction to define a "TR-smooth gauge":

- $|u_n^{(1)}(\mathbf{k})\rangle$ and $|u_n^{(2)}(\mathbf{k})\rangle$ denote gauge choices in the two EBZs - TR-smooth gauge: $|u_n^{(1)}(-\mathbf{k})\rangle = \Theta |u_n^{(2)}(\mathbf{k})\rangle$
- \Rightarrow consider anti-symmetric "t-*matrix":*

antisymmetry property: $t^{\mathrm{T}}(\mathbf{k}) = -t(\mathbf{k})$

- \Rightarrow Pfaffian can be defined: $Pf[t(\mathbf{k})]$
- > Zeroes of $Pf[t(\mathbf{k})]$ occur in isolated points, carry phase winding

Due to time-reversal symmetry:

- (i) $|Pf[t(\mathbf{k})]| = |Pf[t(-\mathbf{k})]| \Rightarrow$ zeros come in pairs
- (ii) At TRI momenta Λ_a we have $|Pf[t(\Lambda_a)]| = 1$ \Rightarrow zeros cannot be brought to TRI momenta

e.g.:
$$\operatorname{Pf} \begin{pmatrix} 0 & z \\ -z & 0 \end{pmatrix} = z$$

 $t_{mn}(\mathbf{k}) = \left\langle u_m^{-}(\mathbf{k}) \right| \Theta \left| u_n^{-}(\mathbf{k}) \right\rangle$

$$(\Pr \left[\omega(\Lambda_a) \right])^2$$

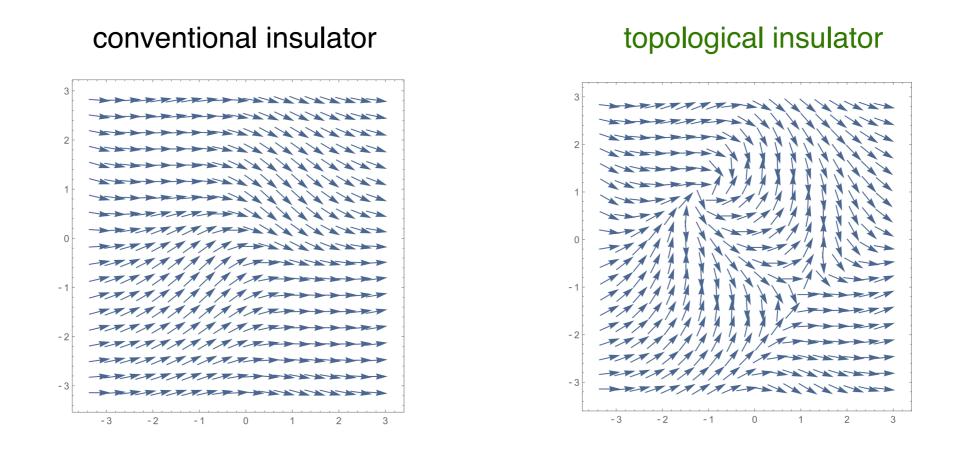
= det $\left[\omega(\Lambda_a) \right]$

[Kane Mele 05]

[Fu and Kane]

2D topological insulator: First bulk Z₂ invariant

Topological invariant = number or zeros of $Pf[t(\mathbf{k})]$ in EBZ modulo 2



$$I = \frac{1}{2\pi i} \int_{\partial(\text{EBZ})} d\mathbf{k} \cdot \nabla \log \left(\Pr\left[\langle u_m^-(\mathbf{k}) | \Theta | u_n^-(\mathbf{k}) \right] \right) \mod 2$$

It follows from **bulk-boundary correspondence**: edge Z₂ invariant = bulk Z₂ invariant

2D topological insulator: Second bulk Z₂ invariant

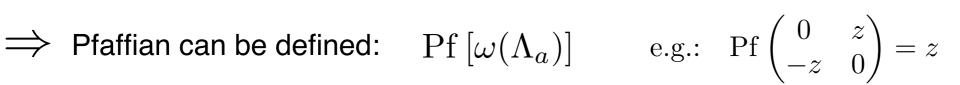
Bulk Z₂ invariant as an obstruction to define a "TR-smooth gauge":

- $|u_n^{(1)}(\mathbf{k})\rangle$ and $|u_n^{(2)}(\mathbf{k})\rangle$ denote gauge choices in the two EBZs - TR-smooth gauge: $|u_n^{(1)}(-\mathbf{k})\rangle = \Theta |u_n^{(2)}(\mathbf{k})\rangle$
- $\operatorname{III-SIIIOUIII gauge.} |u_n^{\vee}(-\mathbf{k})\rangle = \Theta |u_n^{\vee}(\mathbf{k})\rangle$
- \Rightarrow consider unitary *sewing matrix*:

$$\omega_{mn}(\mathbf{k}) = \langle u_m^-(-\mathbf{k}) | \Theta | u_n^-(\mathbf{k}) \rangle$$

antisymmetry property: $\omega^T(\mathbf{k}) = -\omega(-\mathbf{k})$

at TRI momenta: $\Lambda_a = -\Lambda_a \Rightarrow \omega^T(\Lambda_a) = -\omega(\Lambda_a)$ is antisymmetric



$$\frac{\Pr\left[\omega(\Lambda_a)\right]}{\sqrt{\det\left[\omega(\Lambda_a)\right]}} = \pm 1 \qquad \text{(gauge)}$$

(gauge invariant, but smooth gauge needed)

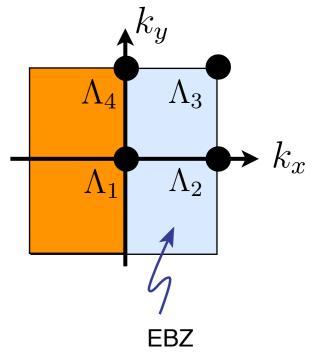
 $(\Pr[\omega(\Lambda_a)])^2$

 $= \det \left[\omega(\Lambda_a) \right]$

Bulk Z₂ invariant (ν = 0,1):

$$(-1)^{\nu} = \prod_{a=1}^{4} \frac{\Pr\left[\omega(\Lambda_a)\right]}{\sqrt{\det\left[\omega(\Lambda_a)\right]}} = \pm 1$$

R-smooth gauge":



[Kane Mele 05]

[Fu and Kane]

It follows from **bulk-boundary correspondence**: edge Z_2 invariant = bulk Z_2 invariant

2D topological insulator: Bulk Z₂ invariants

Three equivalent definitions for bulk Z₂ topological invariant:

(A) in terms of sewing matrix:

$$(-1)^{\nu} = \prod_{a=1}^{4} \frac{\Pr\left[\omega(\Lambda_a)\right]}{\sqrt{\det\left[\omega(\Lambda_a)\right]}} = \pm 1$$

(gauge invariant, but smooth gauge needed)

sewing matrix: $\omega_{mn}(\mathbf{k}) = \langle u_m^-(-\mathbf{k}) | \Theta | u_n^-(\mathbf{k}) \rangle$

(is unitary, and antisymmetric at TRI momenta)

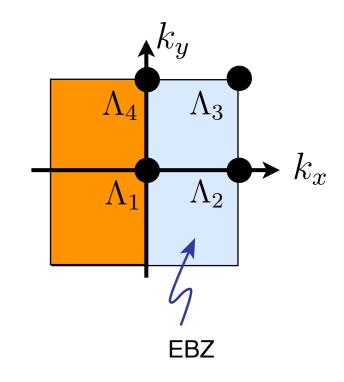
(B) count number of zeroes of $Pf\left[\langle u_m^-(\mathbf{k})|\Theta|u_n^-(\mathbf{k})\right]$ in EBZ

$$I = \frac{1}{2\pi i} \int_{\partial(\text{EBZ})} d\mathbf{k} \cdot \nabla \log \left(\Pr\left[\langle u_m^-(\mathbf{k}) | \Theta | u_n^-(\mathbf{k}) \right] \right) \mod 2$$
(antisymmetric at all momenta.)

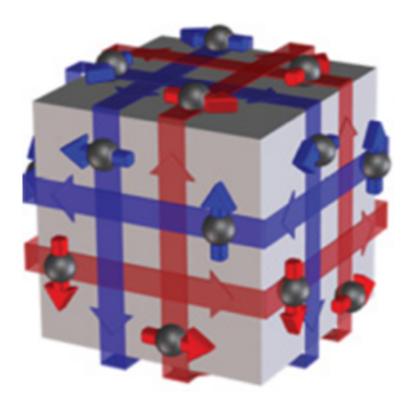
but not unitary)

(C) in terms of Berry connection:

$$\nu = \frac{1}{2\pi} \left[\oint_{\partial(EBZ)} d\mathbf{k} \cdot \mathcal{A} - \int_{EBZ} d^2 \mathbf{k} \,\mathcal{F} \right] \mod 2$$



Three-dimensional topological insulators



3D topological insulator: Surface Z₂ invariant

Energy

Ef

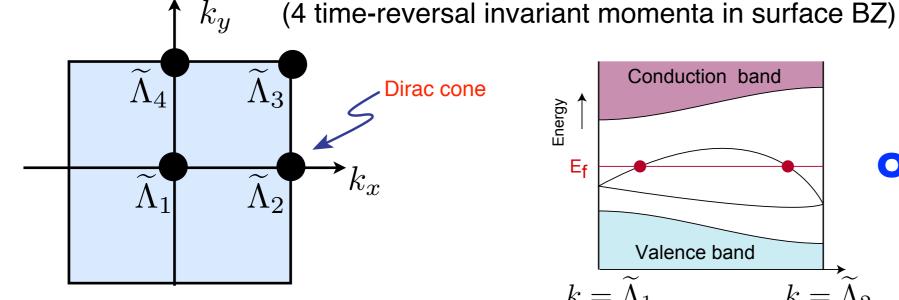
 $k = \widetilde{\Lambda}_1$

Conduction band

Valence band

• How do surface states connect between TRI momenta?

[after Hasan & Kane, RMP 2010]

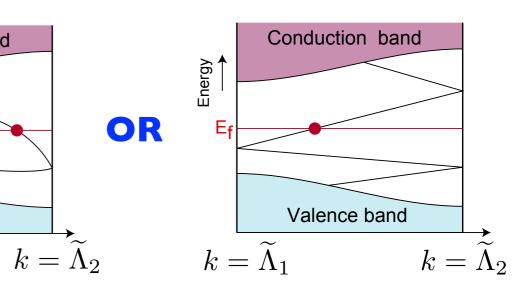


surface Brillouin zone

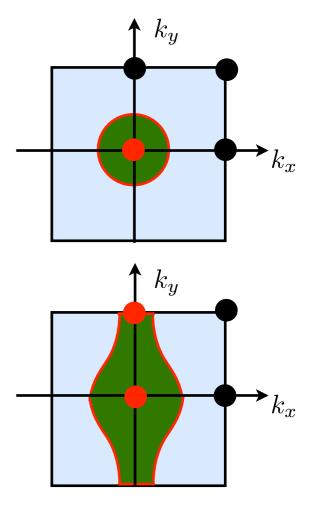
• Surface Z₂ invariant:

 $\nu = 1$: Strong topological insulator

- Fermi surface encloses odd number of TRI momenta
- independent of surface orientation
- protected by time-reversal symmetry
- $\nu = 0$: Weak topological insulator
- Fermi surface encloses even number of TRI momenta
- depends on surface orientation (quasi-2D topological insulator)
- protected by time-reversal and translation symmetry



OR



3D topological insulator: Bulk Z₂ invariant

- Bulk Z₂ invariant:
 - Zeros of $Pf[t(\mathbf{k})]$ are lines
 - Due to time-reversal symmetry there are only 16 possibilities for the arrangement of the lines:
 - $(\nu_0;\nu_1,\nu_2,\nu_3)$

- Strong Z₂ invariant

$$(-1)^{\nu_0} = \prod_{a=1}^{\circ} \frac{\Pr\left[\omega(\Lambda_a)\right]}{\sqrt{\det\left[\omega(\Lambda_a)\right]}} = \pm 1$$

Т

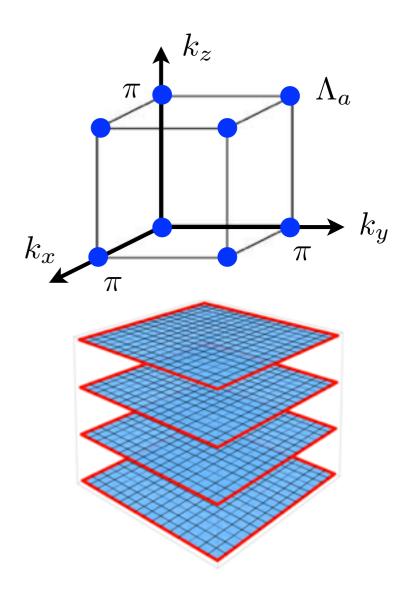
— Weak Z₂ invariant

$$(-1)^{\nu_i} = \prod_{a=1}^{4} \frac{\Pr\left[\omega(\Lambda_a)\right]}{\sqrt{\det\left[\omega(\Lambda_a)\right]}} \bigg|_{k_i=0}$$

1

$$t_{mn}(\mathbf{k}) = \left\langle u_m^{-}(\mathbf{k}) \right| \Theta \left| u_n^{-}(\mathbf{k}) \right\rangle$$

8 TRI momenta in bulk BZ



Bulk-boundary correspondence: edge Z₂ invariant = bulk Z₂ invariant

Experimental detection of 3D topological insulators

observed in certain band insulators with strong spin-orbit coupling

BiSb alloy, Bi₂Se₃, Bi₂Te₃, TIBiTe₂, TISbSe₂, etc

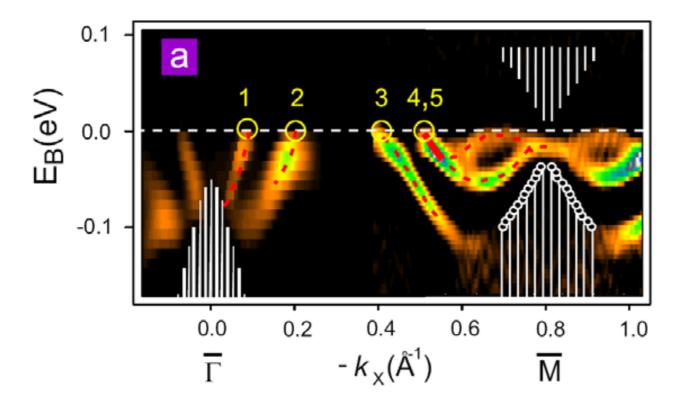
stable surface states cross a gap, that is opened up by spin-orbit coupling

•
$$\operatorname{Bi}_{1-x} \operatorname{Sb}_x$$
 :

[Fu, Kane, PRL 2007]

[Hsieh, Hasan et al, Nature 2008]

momentum resolved photoemission (ARPES)



five surface state bands cross E_{F} between TRI momenta $\,\Gamma\,$ and $\,M\,$

$$\Rightarrow$$
 strong topological insulator

Experimental detection of 3D topological insulators

0.3

0.2

0.1

-0.1

spin resolved and momentum resolved photoemission (ARPES) a С High Low Tuned Bi2-8Ca8Se3 0.0 0.1-E^B (eV) k_y (Å⁻¹) 0.0 -0.1 -0.4 -0.1 0.0 0.1 -0.1 0.0 0.1 k_x (Å⁻¹)

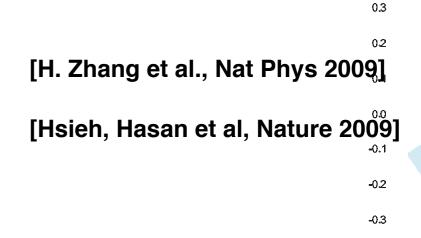
simple surface state structure, similar to graphene

Unique properties of helical surface states:

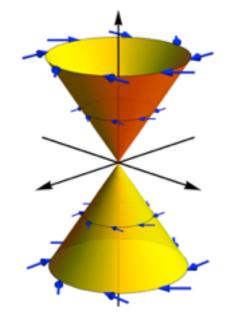
• spin and momentum are locked

• Bi_2 Se₃ :

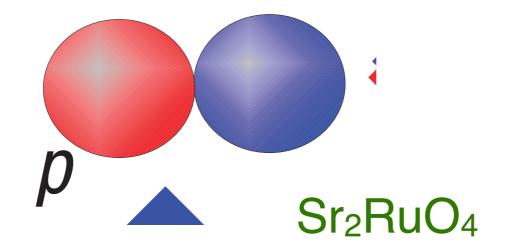
- half of an ordinary 2DEG, "1/4 of graphene"
- robust to disorder, impossible to localize



0.3

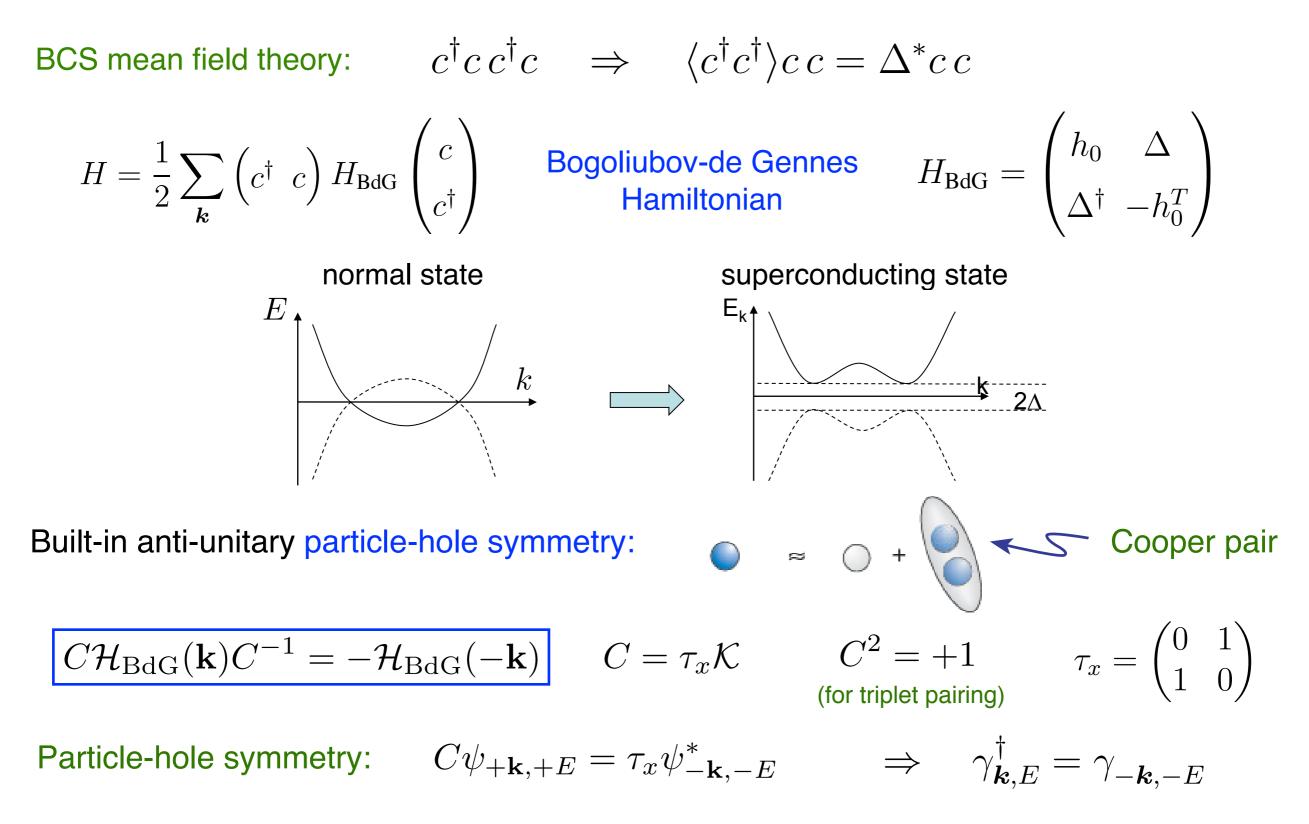


Topological Superconductors



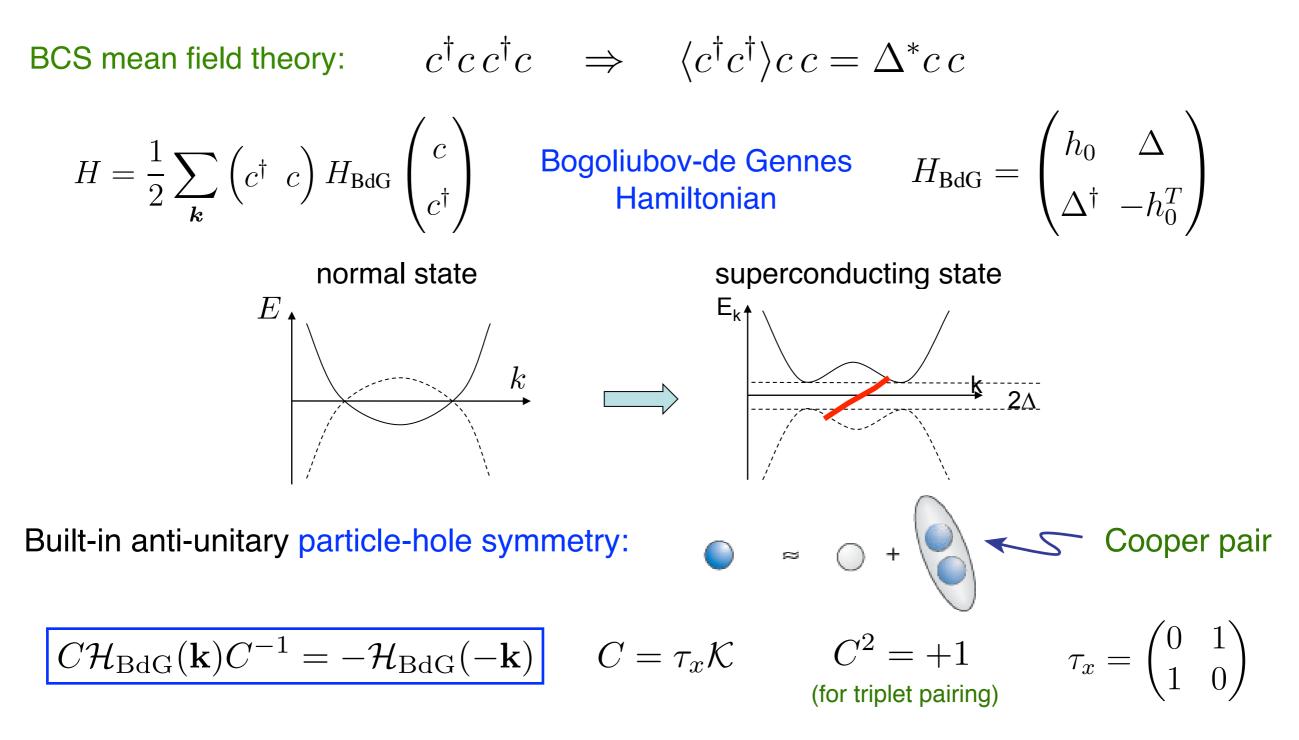
Bogoliubov-de Gennes theory for superconductors

Superconductor = Cooper pairs (boson) + Bogoliubov quasiparticles (fermions)



Bogoliubov-de Gennes theory for superconductors

Superconductor = Cooper pairs (boson) + Bogoliubov quasiparticles (fermions)



Particle-hole symmetry + bulk-boundary correspondence:

Majorana edge state at zero energy

1D topological superconductor: Majorana chain

[Kitaev 2000]

One-dimensional spinless p-wave superconductor: Majorana chain

Experiments: InSb-nanowire-heterostructures

Hamiltonia

Hamiltonian:
$$\mathcal{H} = \sum_{j} \left[t(c_{j}^{\dagger}c_{j+1} + c_{j+1}^{\dagger}c_{j} - \mu c_{j}^{\dagger}c_{j} + \Delta(c_{j+1}^{\dagger}c_{j}^{\dagger} + c_{j}c_{j+1}) \right]$$

in momentum space:
$$\mathcal{H} = \frac{1}{2} \sum_{k} \left(c_{k}^{\dagger} \quad c_{-k} \right) \mathcal{H}_{\mathrm{BdG}}(k) \begin{pmatrix} c_{k} \\ c_{-k}^{\dagger} \end{pmatrix}$$
$$\mathcal{H}_{\mathrm{BdG}}(k) = \mathbf{d}(k) \cdot \vec{\tau}$$

$$d_x(k) = 2i\Delta \sin k \quad d_y(k) = 0$$
$$d_z(k) = 2t\cos k - \mu$$

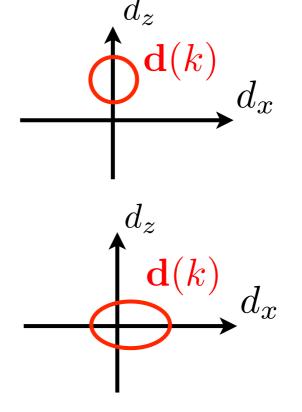
Particle-hole symmetry:

$$\tau_x \mathcal{H}^*_{\mathrm{BdG}}(k) \tau_x = -\mathcal{H}_{\mathrm{BdG}}(-k)$$

Time-reversal symmetry:

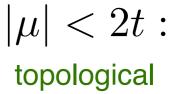
$$\tau_z \mathcal{H}^*_{\mathrm{BdG}}(k) \tau_z = +\mathcal{H}_{\mathrm{BdG}}(-k)$$

energy spectrum: $E_{\pm} = \pm |\mathbf{d}(k)|$



$$\mu| > 2t:$$

trivial superconductor



superconductor

1D topological superconductor: Majorana chain

To reveal zero-energy edge states, consider different viewpoint: Majorana representation

Majorana fermion: Particle = Antiparticle

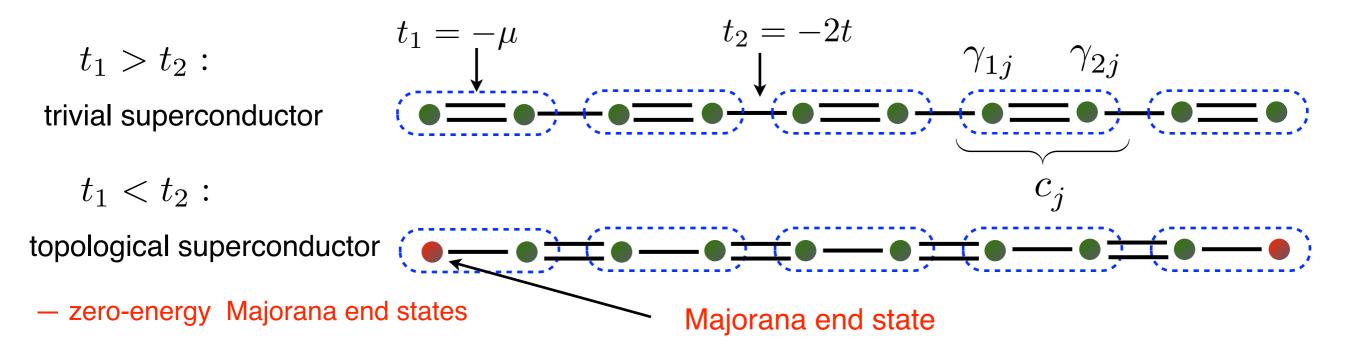
$$c_{j} = \frac{1}{2} \left(\gamma_{1j} + i \gamma_{2j} \right) \qquad c_{j}^{\dagger} = \frac{1}{2} \left(\gamma_{1j} - i \gamma_{2j} \right)$$

Anti-commutation relations: $\{\gamma_{lj}, \gamma_{l'j'}\} = 2\delta_{ll'}\delta_{jj'} \quad (\gamma_{lj})^2 = 1$

 \implies Majorana chain for spinless fermions

$$H = \frac{i}{2} \sum_{j} \left[-\mu \gamma_{1j} \gamma_{2j} + (\Delta - t) \gamma_{2j} \gamma_{1j+1} + (\Delta + t) \gamma_{1j} \gamma_{2j+1} \right]$$

for $\Delta = -t$: nearest neighbor Majorana chain

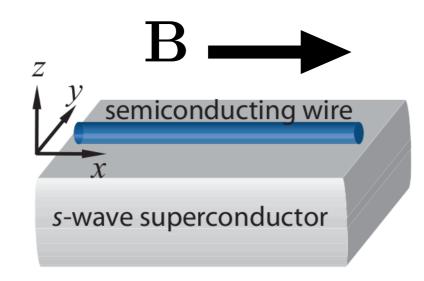


[Kitaev 2000]

Experimental detection of 1D spinless topological SC

1D spinless chiral p-wave superconductor is likely (?) realized in InSb-nanowire-heterostructures

magnetic field B

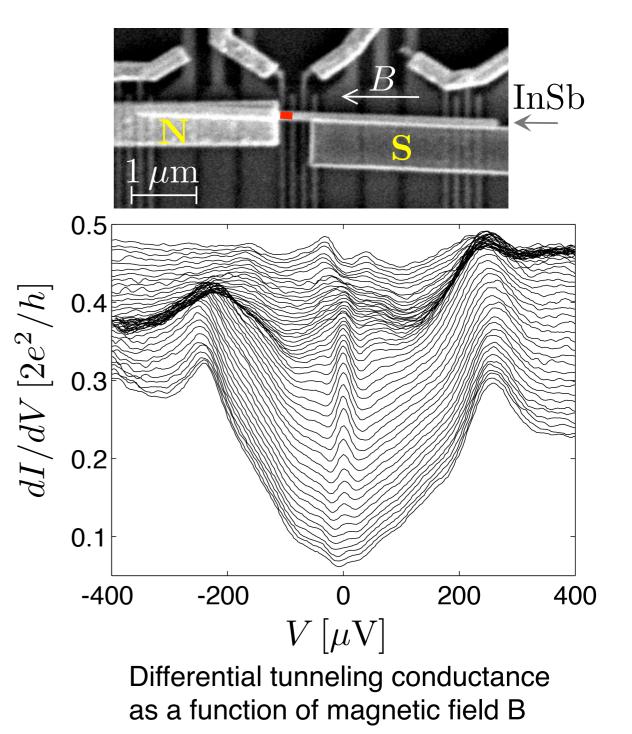


• Condition for topological phase:

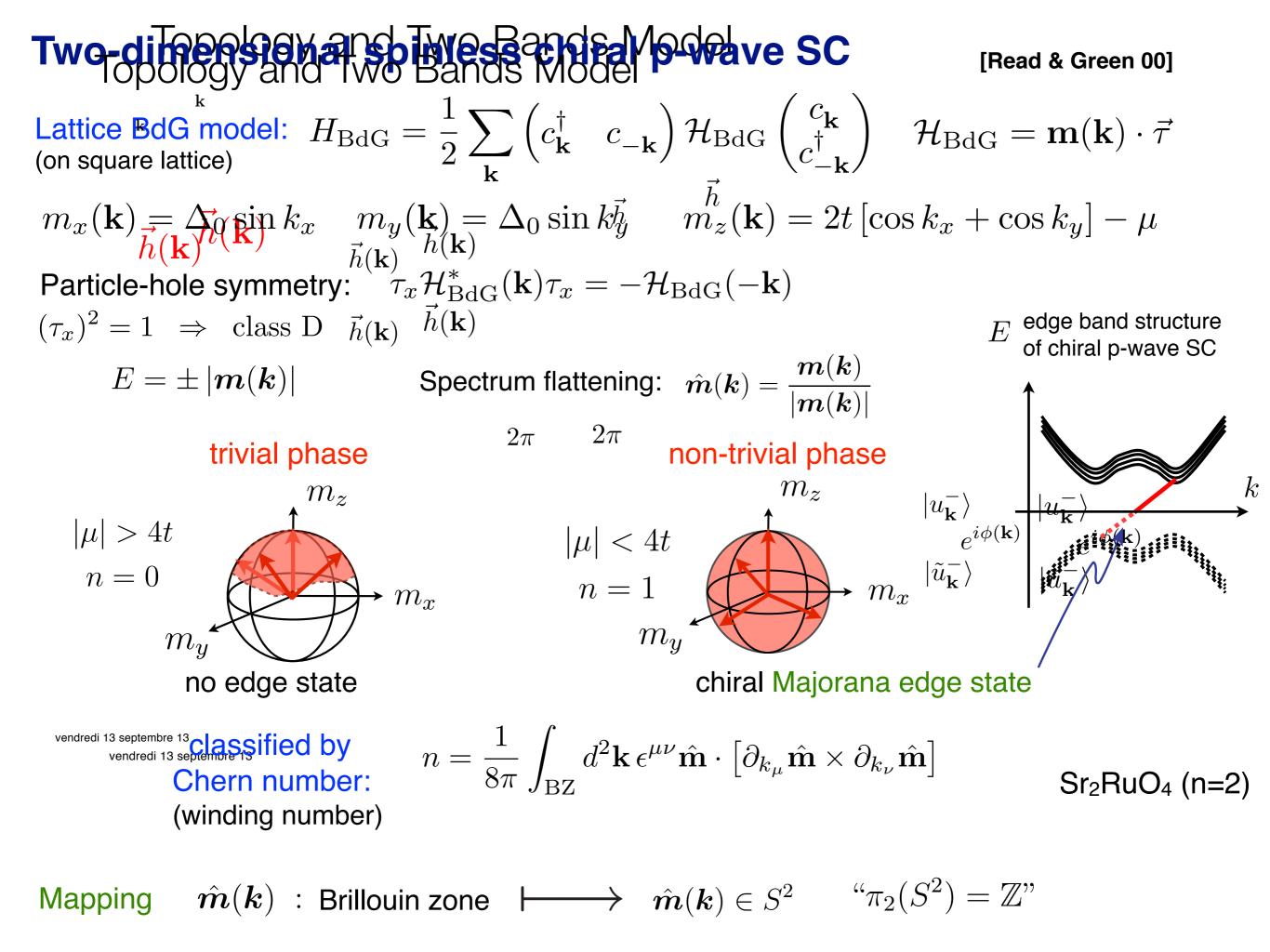
$$B \propto E_{\text{Zeeman}} > \sqrt{\Delta^2 - \mu^2}$$

[Sau, Lutchyn, Tewari, das Sarma, et al 2009] [Oreg, von Oppen, et al 2010]

[after Alicea, Rep. Prog. Phys. 2012]



[Mourik, Kouwenhoven et al, Science 2012]



Majorana fermions in chiral p-wave superconductor

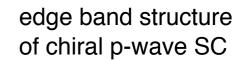
> Bulk-boundary correspondence: n = # Majorana edge modes

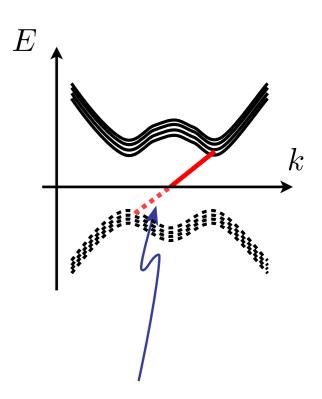
Majorana edge states are perfect heat conductor

Quantized thermal Hall conductance

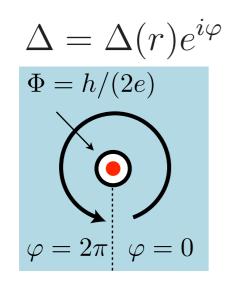
$$\frac{\kappa_{xy}}{T} = \frac{\pi k_B^2}{48h} \int_{\mathrm{BZ}} d^2 \mathbf{k} \, \epsilon^{\mu\nu} \hat{\mathbf{m}} \cdot \left[\partial_{k_{\mu}} \hat{\mathbf{m}} \times \partial_{k_{\nu}} \hat{\mathbf{m}} \right]$$

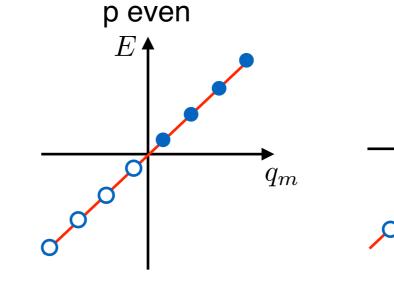
- Majorana zero mode at a vortex:
 - vortex: small hole with edge states
 - Majorana zero mode for $\Phi = p \frac{h}{2e}$ with p odd (periodic vs. anti-periodic BC)





Majorana state





[Caroli, de Gennes, Matricon '64]

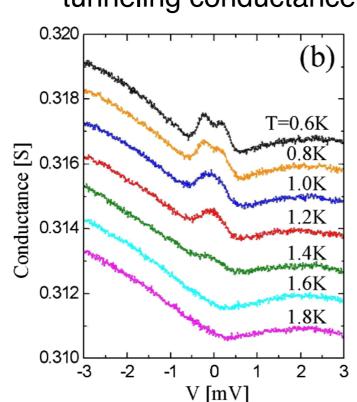
 q_m

p odd

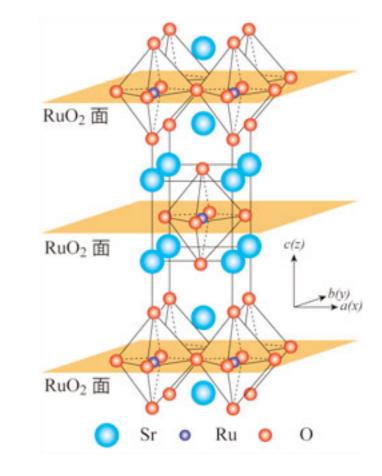
Experimental detection of spinful chiral p-wave SC

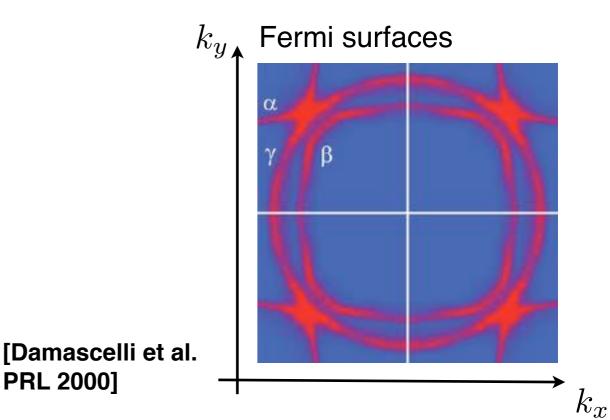
The transition-metal-oxide Sr₂RuO₄ is likely (?) a *spinful* chiral p-wave superconductor with Chern number n=2 (per layer)

- Ru t_{2g}-orbitals (4d⁴-electrons) hybridized with O p-oribitals form quasi-two-dimensional Fermi surfaces
- transition temperature $T_C = 1.5K$
- strong anisotropies in spin dependent responses (NMR and Knight shift)
- signatures of edge states in tunneling conductance



PRL 20001





tunneling conductance

[Maeno et al. JPSJ 81, 011009]

[Kashiwaya et al. PRL 2011]