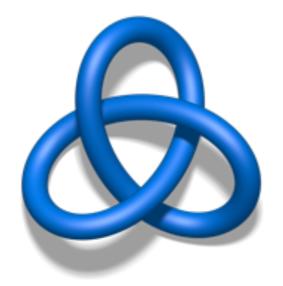
Modern Topics in Solid-State Theory: Topological insulators and superconductors

Andreas P. Schnyder

Max-Planck-Institut für Festkörperforschung, Stuttgart



Universität Stuttgart

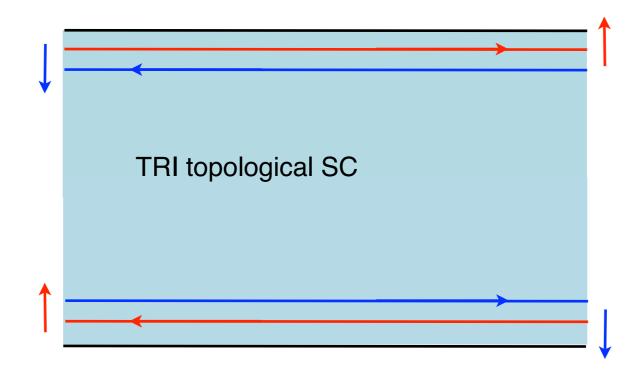
January 2016

Lecture Four: Classification schemes

1. Topological superconductors

- Topological superconductors w/ TRS in 2D
- Topological superconductors w/ TRS in 3D
- 2. Symmetries & ten-fold classification
 - Symmetry classes of ten-fold way
 - Dirac Hamiltonians and Dirac mass gaps
 - Periodic table of topological insulators and superconductors

Helical superconductors (w/ time-reversal symmetry)



Superconducting pairing with spin:

$$H_{\rm MF} = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \sum_{\mathbf{k}\sigma\sigma'} \left[\Delta_{\sigma\sigma'}(\mathbf{k}) c^{\dagger}_{\mathbf{k},\sigma} c^{\dagger}_{-\mathbf{k},\sigma'} + \Delta^{*}_{\sigma\sigma'}(\mathbf{k}) c_{-\mathbf{k},\sigma'} c_{\mathbf{k},\sigma} \right]$$

2 x 2 Gap matrix: $\Delta(\mathbf{k}) = [\Delta_s(\mathbf{k})\sigma_0 + \mathbf{d}(\mathbf{k}) \cdot \vec{\sigma}]i\sigma_y$

Time-reversal symmetry: $\sigma_y \Delta^{\dagger}(\mathbf{k}) \sigma_y = \Delta^{\mathrm{T}}(-\mathbf{k})$

Different spin-pairing symmetries: (anti-symmetry of wavefunction)

spin-triplet:

$$\begin{split} d_x(\mathbf{k}) - i d_y(\mathbf{k}) : &|\uparrow\uparrow\rangle\\ d_x(\mathbf{k}) + i d_y(\mathbf{k}) : &|\downarrow\downarrow\rangle \quad \text{odd parity:} \quad \mathbf{d}(\mathbf{k}) = -\mathbf{d}(-\mathbf{k})\\ d_z(\mathbf{k}) : &\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \end{split}$$

(also known as "helical superconductor")

Square lattice BdG Hamiltonian in the presence of time-reversal symmetry:

 $\begin{array}{ll} \text{Simplest model:} \\ \text{(spinless chiral p-wave SC)}^2 \end{array} \quad \mathcal{H}_{\mathrm{BdG}}(\mathbf{k}) = \begin{pmatrix} \mathcal{H}_{p+ip}(\mathbf{k}) & 0 \\ 0 & \mathcal{H}_{p-ip}(\mathbf{k}) \end{pmatrix} \end{array}$

 $\varepsilon(\mathbf{k}) = 2t(\cos k_x + \cos k_y) - \mu \qquad d_x(\mathbf{k}) = \sin k_x \quad d_y(\mathbf{k}) = \sin k_y \quad d_z(\mathbf{k}) = 0$

TRS:
$$T\mathcal{H}_{BdG}(\mathbf{k})T^{-1} = +\mathcal{H}_{BdG}(-\mathbf{k})$$
 $T = i\sigma_y \otimes \tau_0 \mathcal{K}$ $T^2 = -1$
PHS: $C\mathcal{H}_{BdG}(\mathbf{k})C^{-1} = -\mathcal{H}_{BdG}(-\mathbf{k})$ $C = \sigma_0 \otimes \tau_x \mathcal{K}$ $C^2 = +1$ class DIII

Combination of time-reversal and particle-hole symmetry:

(chiral symmetry) $U_S = (i\sigma_y \otimes \tau_0)(\sigma_0 \otimes \tau_x) \qquad U_S \mathcal{H}_{BdG}(\mathbf{k}) + \mathcal{H}_{BdG}(\mathbf{k}) U_S = 0$

 \succ \mathcal{H}_{BdG} can be brought into block-off diagonal form: (transform to basis in which S is diagonal)

$$\widetilde{\mathcal{H}}_{BdG}(\mathbf{k}) = \begin{pmatrix} 0 & D(\mathbf{k}) \\ D^{\dagger}(\mathbf{k}) & 0 \end{pmatrix} \qquad D(\mathbf{k}) = (i\sigma_y) \left\{ \varepsilon_{\mathbf{k}} \sigma_0 + i\Delta_t [\mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}] \right\}$$

> TRS acts on
$$D(\mathbf{k})$$
 as follows: $D^T(-\mathbf{k}) = -D(\mathbf{k})$

(also known as "helical superconductor")

Square lattice BdG Hamiltonian in the presence of time-reversal symmetry:

Simplest model: (spinless chiral p-wave SC)² $\mathcal{H}_{BdG}(\mathbf{k}) = \begin{pmatrix} \varepsilon(\mathbf{k})\sigma_0 & \Delta_t[\mathbf{d}(\mathbf{k})\cdot\vec{\sigma}](i\sigma_y) \\ \Delta_t(-i\sigma_y)[\mathbf{d}(\mathbf{k})\cdot\vec{\sigma}] & -\varepsilon(\mathbf{k})\sigma_0 \end{pmatrix}$ $\varepsilon(\mathbf{k}) = 2t(\cos k_x + \cos k_y) - \mu \quad d_x(\mathbf{k}) = \sin k_x \quad d_y(\mathbf{k}) = \sin k_y \quad d_z(\mathbf{k}) = 0$ TRS: $T\mathcal{H}_{BdG}(\mathbf{k})T^{-1} = +\mathcal{H}_{BdG}(-\mathbf{k}) \quad T = i\sigma_y \otimes \tau_0 \mathcal{K} \quad T^2 = -1$ PHS: $C\mathcal{H}_{BdG}(\mathbf{k})C^{-1} = -\mathcal{H}_{BdG}(-\mathbf{k}) \quad C = \sigma_0 \otimes \tau_x \mathcal{K} \quad C^2 = +1$ class DIII

Combination of time-reversal and particle-hole symmetry:

(chiral symmetry) $U_S = (i\sigma_y \otimes \tau_0)(\sigma_0 \otimes \tau_x) \qquad U_S \mathcal{H}_{BdG}(\mathbf{k}) + \mathcal{H}_{BdG}(\mathbf{k})U_S = 0$

 \blacktriangleright \mathcal{H}_{BdG} can be brought into block-off diagonal form: (transform to basis in which S is diagonal)

$$\widetilde{\mathcal{H}}_{BdG}(\mathbf{k}) = \begin{pmatrix} 0 & D(\mathbf{k}) \\ D^{\dagger}(\mathbf{k}) & 0 \end{pmatrix} \qquad D(\mathbf{k}) = (i\sigma_y) \left\{ \varepsilon_{\mathbf{k}} \sigma_0 + i\Delta_t [\mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}] \right\}$$

> TRS acts on
$$D(\mathbf{k})$$
 as follows: $D^T(-\mathbf{k}) = -D(\mathbf{k})$

$$\widetilde{\mathcal{H}}_{BdG}(\mathbf{k}) = \begin{pmatrix} 0 & D(\mathbf{k}) \\ D^{\dagger}(\mathbf{k}) & 0 \end{pmatrix} \quad \text{where:} \quad D(\mathbf{k}) = (i\sigma_y) \left\{ \varepsilon_{\mathbf{k}} \sigma_0 + i\Delta_t [\mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}] \right\}$$

Spectrum flattening: $Q = \mathbb{1}_{4N} - 2P$ Projector onto filled Bloch bands $Q(\mathbf{k}) = \begin{pmatrix} 0 & q(\mathbf{k}) \\ q^{\dagger}(\mathbf{k}) & 0 \end{pmatrix}$

> TRS acts on $q(\mathbf{k})$ as follows: $q(\mathbf{k}) = -q^T(-\mathbf{k})$

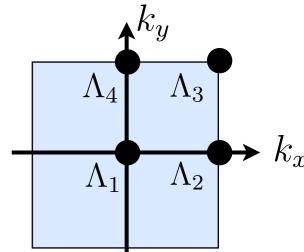
The eigenfunctions of $Q(\mathbf{k})$ are:

$$|u_a^{\pm}(\mathbf{k})\rangle_{\mathrm{N}} = \frac{1}{\sqrt{2}} \begin{pmatrix} n_a \\ \pm q^{\dagger}(\mathbf{k})n_a \end{pmatrix}$$
 where: $(n_a)_b = \delta_{ab}$

are globally defined.

 $(-1)^{\nu} = \prod_{a=1}^{4} \frac{\Pr\left[\omega(\Lambda_a)\right]}{\sqrt{\det\left[\omega(\Lambda_a)\right]}} = \pm 1 \qquad \qquad \omega(\mathbf{k}) = \sqrt{u_a^-(-\mathbf{k})} |\Theta u_b^-(\mathbf{k})\rangle_{\mathrm{N}}$ **Z**₂ topological invariant: $\Rightarrow \left| (-1)^{\nu} = \prod_{a=1}^{4} \frac{\Pr\left[q^{T}(\Lambda_{a})\right]}{\sqrt{\det\left[q(\Lambda_{a})\right]}} = \pm 1 \right| \begin{array}{c} q(\mathbf{k}) = -q^{T}(-\mathbf{k}) \\ q^{\dagger}(\mathbf{k}) = q^{-1}(\mathbf{k}) \end{array} \right|$

same symmetries as sewing matrix)



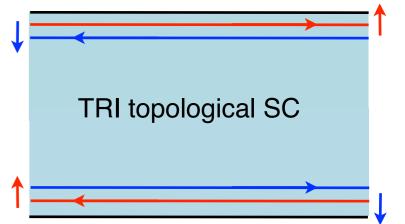
Bulk-boundary correspondence:

By analogy to chiral p-wave SC: (for $|\mu| < 4t$) two counter-propagating Majorana edge modes

-protected by TRS and PHS

 possible condensed matter realization: thin film of CePt₃Si? helical Majorana edge states:

 k_x



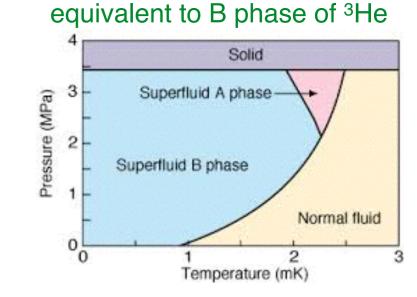
Cubic lattice BdG Hamiltonian in the presence of time-reversal symmetry:

$$\mathcal{H}_{\mathrm{BdG}}(\mathbf{k}) = \begin{pmatrix} \varepsilon(\mathbf{k})\sigma_0 & \Delta_t[\mathbf{d}(\mathbf{k})\cdot\vec{\sigma}](i\sigma_y) \\ \Delta_t(-i\sigma_y)[\mathbf{d}(\mathbf{k})\cdot\vec{\sigma}] & -\varepsilon(\mathbf{k})\sigma_0 \end{pmatrix}$$

$$\varepsilon(\mathbf{k}) = 2t(\cos k_x + \cos k_y + \cos k_z) - \mu$$

$$\varepsilon(\mathbf{k}) = 2t(\cos k_x + \cos k_y + \cos k_z) - \mu$$

$$\varepsilon(\mathbf{k}) = \frac{\Theta H(\mathbf{k})\Theta^{-1} = -H(-\mathbf{k})}{\Theta^{-1} = -H(-\mathbf{k})} = \frac{\Theta^{-1} = -H(-\mathbf{k$$



TRS
$$T\mathcal{H}_{BdG}(\mathbf{k})T^{-1} = +\mathcal{H}_{BdG}(-\mathbf{k})$$
 $T = i\sigma_y \otimes \tau_0 \mathcal{K}$ $T^2 = -1$ PHS $C\mathcal{H}_{BdG}(\mathbf{k})C^{-1} = -\mathcal{H}_{BdG}(-\mathbf{k})$ $C = \sigma_0 \otimes \tau_x \mathcal{K}$ $C^2 = +1$ class DIIIChiral symmetry (TRS x PHS): $U_S \mathcal{H}_{BdG}(\mathbf{k}) + \mathcal{H}_{BdG}(\mathbf{k}) U_S = 0$

• \mathcal{H}_{BdG} can be brought into block-off diagonal form: (transform to basis in which S is diagonal)

$$\widetilde{\mathcal{H}}_{BdG}(\mathbf{k}) = \begin{pmatrix} 0 & D(\mathbf{k}) \\ D^{\dagger}(\mathbf{k}) & 0 \end{pmatrix} \qquad D(\mathbf{k}) = (i\sigma_y) \left\{ \varepsilon_{\mathbf{k}} \sigma_0 + i\Delta_t [\mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}] \right\}$$

> TRS acts on
$$D(\mathbf{k})$$
 as follows: $D^T(-\mathbf{k}) = -D(\mathbf{k})$

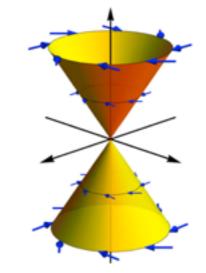
Lattice BdG Hamiltonian:
$$\widetilde{\mathcal{H}}_{BdG}(\mathbf{k}) = \begin{pmatrix} 0 & D(\mathbf{k}) \\ D^{\dagger}(\mathbf{k}) & 0 \end{pmatrix}$$

 \blacktriangleright Off-diagonal block: $D(\mathbf{k}) = (i\sigma_y) \{\varepsilon_{\mathbf{k}}\sigma_0 + i\Delta_t[\mathbf{d}_{\mathbf{k}} \cdot \vec{\sigma}]\}$
Mapping $D(\mathbf{k})$: Brillouin zone $\longmapsto D(\mathbf{k})$ TRS: $D(\mathbf{k}) = -D^T(\mathbf{k})$
 \blacktriangleright Spectrum flattening: $q(\mathbf{k}) = \sum_a \frac{1}{\lambda_a(\mathbf{k})} u_a(\mathbf{k}) u_a^{\dagger}(\mathbf{k}) D(\mathbf{k}) \quad u_a(\mathbf{k})$: eigenvectors of DD^{\dagger}
Mapping $q(\mathbf{k})$: Brillouin zone $\longmapsto q(\mathbf{k}) \in U(2)$ $\pi_2[U(2)] = 0$
TRS: $q(\mathbf{k}) = -q^T(-\mathbf{k})$ $\pi_3[U(2)] = \mathbb{Z}$
 \Longrightarrow classified by winding number: $W = \frac{1}{24\pi^2} \int_{BZ} d^3k \, \varepsilon^{\mu\nu\rho} \operatorname{Tr} \left[(q^{-1}\partial_{\mu}q)(q^{-1}\partial_{\nu}q)(q^{-1}\partial_{\rho}q) \right]$

Bulk-boundary correspondence:

|W| = # Kramers-degenerate Majorana states

Possible condensed matter realization: CePt₃Si, Li₂Pt₃B, CeRhSi₃, CeIrSi₃, etc.



Classification schemes

Sy	mme		dim			
Class	$\mid T$	P	S	1	2	3
А	0	0	0	0	\mathbb{Z}	0
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}
AI	1	0	0	0	0	0
BDI	1	1	1	\mathbb{Z}	0	0
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2
С	0	-1	0	0	\mathbb{Z}	0
CI	1	-1	1	0	0	\mathbb{Z}

Symmetry classes: "Ten-fold way"

(originally introduced in the context of random Hamiltonians / matrices)

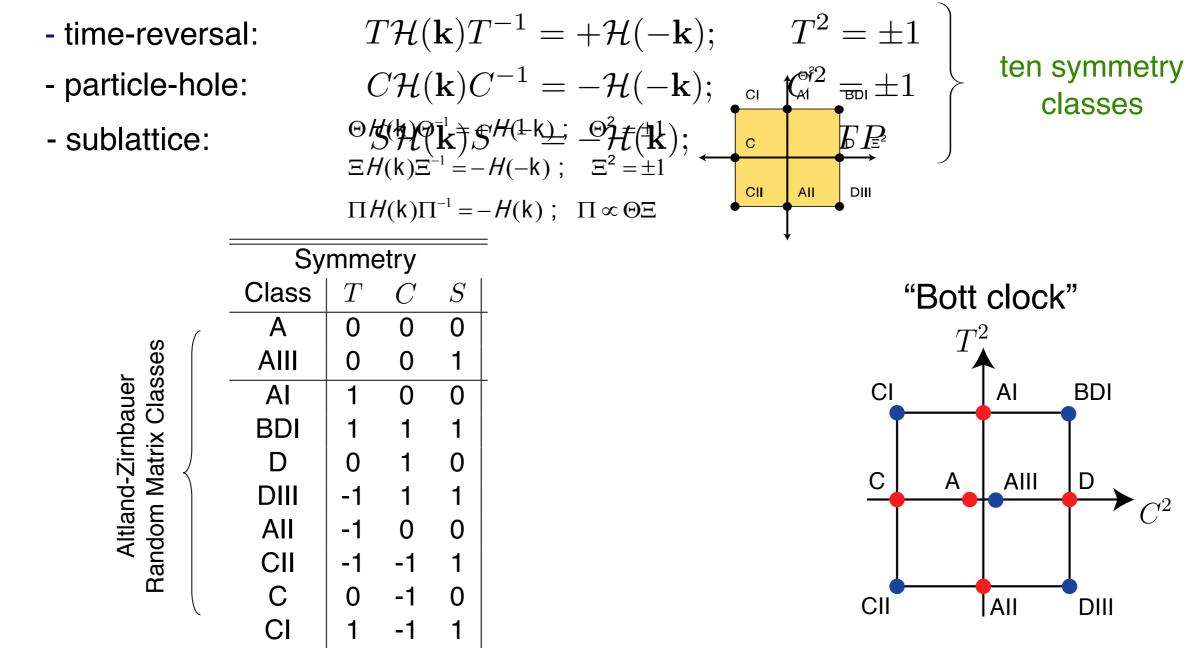
time-reversal invariance:
$$T = U_T \mathcal{K}$$
 (is antiunitary)
 $T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k})$
 $T: \begin{cases} 0 & \text{no time reversal invariance} \\ +1 & \text{time reversal invariance and} \\ -1 & \text{time reversal invariance and} \end{cases}$
 $T^2 = +1$
 $T^2 = -1$
complex conjugation
particle-hole symmetry (Ξ): $C = U_C \mathcal{K}$
 $C^{-1}\mathcal{H}(-\mathbf{k})C = -\mathcal{H}(\mathbf{k})$
 $C: \begin{cases} 0 & \text{no particle-hole symmetry} \\ +1 & \text{particle-hole symmetry and} \\ C^2 = +1 \\ -1 & \text{particle-hole symmetry and} \\ C^2 = -1 \end{cases}$
In addition we can also consider the
"sublattice symmetry" $S \propto TC$

S: $S\mathcal{H}(\mathbf{k}) + \mathcal{H}(\mathbf{k})S = 0$

Note: SLS is often also called "chiral symmetry"

Ten-fold classification:

- classifies fully gapped topological materials in terms of *non-spatial symmetries* (i.e., symmetries that act *locally* in space)
- non-spatial symmetries:



Ten-fold classification:

- classifies fully gapped topological materials in terms of *non-spatial symmetries* (i.e., symmetries that act *locally* in space)
- non-spatial symmetries:
 - time-reversal: particle-hole: sublattice: $T\mathcal{H}(\mathbf{k})T^{-1} = +\mathcal{H}(-\mathbf{k}); \qquad T^{2} = \pm 1$ $C\mathcal{H}(\mathbf{k})C^{-1} = -\mathcal{H}(-\mathbf{k}); \qquad C^{2}\mathcal{H}(-\mathbf{k}); \qquad C^{2}\mathcal{$ ten symmetry classes CII All DIII $\Pi H(\mathbf{k})\Pi^{-1} = -H(\mathbf{k}); \quad \Pi \propto \Theta \Xi$ Symmetry Class TSC0 0 0 Α Random Matrix Classes AIII 0 0 1 Altland-Zirnbauer 1 0 AI 0 For which symmetry class and 1 1 BDI 1 dimension is there a topological 0 1 0 D insulator/superconductor? DIII -1 1 1 -1 0 All 0 -1 -1 CII 1 С -1 0 0 CI -1 1 1

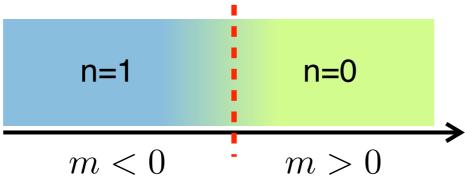
Symmetries and Dirac Hamiltonians

Dirac Hamiltonian in spatial dimension d: $\mathcal{H}(k) = \sum_{i=1}^{d} k_i \gamma_i + m \gamma_0$ $E_{\pm} = \pm \sqrt{m^2 + \sum_{i=1}^{d} k_i^d}$

- Gamma matrices γ_i obey: $\{\gamma_i, \gamma_j\} = 2\delta_{ij}$ $i = 0, 1, \dots, d$
- TRS, PHS and chiral symmetry lead to the conditions:

$$[\gamma_0, T] = 0 \qquad \{\gamma_{i \neq 0}, T\} = 0 \{\gamma_0, C\} = 0 \qquad [\gamma_{i \neq 0}, C] = 0 \qquad \{\gamma_i, S\} = 0$$

• Topological phase transition as a function of mass term $m\gamma_0$



 \mathbf{P} are there extra symmetry preserving mass terms $M\gamma_{d+1}$ that connect the two phases without gap closing?

$$\{\gamma_{d+1}, \gamma_i\} = 0$$
 $i = 0, 1, \dots 2$
 $E_{\pm} = \pm \sqrt{m^2 + M^2 + \sum_{i=1}^d k_i^d}$
NO: topologically non-trivial **YES:** topologically trivial

Symmetries and Dirac Hamiltonians

Dirac Hamiltonian in spatial dimension d:

$$\mathcal{H}(k) = \sum_{i=1}^{d} k_i \gamma_i + m \gamma_0 \qquad E_{\pm} = \pm \sqrt{m^2 + \sum_{i=1}^{d} k_i^d}$$

Gapless surface states (interface states):

$$\mathcal{H} = \gamma_0 \left(\widetilde{m} \mathbb{I} - i\gamma_0 \gamma_d \frac{\partial}{\partial r_d} \right) + \sum_{i=1}^{d-1} k_i \gamma_i$$

 $m < 0 \qquad m > 0$ surface state ϕ : $i\gamma_0\gamma_d\Phi = \pm \Phi$ surface Hamiltonian: $\mathcal{H}_{surf} = \sum_{i=1}^{d-1} k_i \mathbf{P}\gamma_i \mathbf{P}$ gapless surface spectrum: $E_{surf}^{\pm} = \pm \sqrt{\sum_{i=1}^{d-1} k_i^2}$ resence of extra symmetry proces

- - extra mass term projected onto surface is non-vanishing

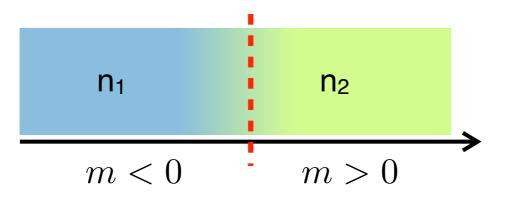
$$M\mathbf{P}\gamma_{d+1}\mathbf{P}$$
 anti-commutes with $\mathbf{P}\gamma_i\mathbf{P}$ $i=1,\ldots,d-1$

gapped surface spectrum

$$k_d \to i\partial/\partial r_d$$

Dirac Hamiltonian in symmetry class Alll

• Topological phase transition as a function of mass term $m\gamma_0$



$$S = \sigma_1 \qquad S\mathcal{H}(\mathbf{k}) + \mathcal{H}(\mathbf{k})S = 0$$

• One-dimensional Dirac Hamiltonian with rank 2:

 $\mathcal{H}(k) = k\sigma_3 + m\sigma_2$

no extra symmetry preserving mass term exists

 \Rightarrow class AIII in 1D is topologically non-trivial

- space of normalized mass matrices $V_{d=1,r=2}^{AIII} = \{\pm \sigma_2\}$

One-dimensional Dirac Hamiltonian in symmetry class All

 $T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k}) \qquad T^2 = -1$

*Dirac matrices with rank 2:

 $\mathcal{H}(k) = k\sigma_3 \qquad \qquad T = i\sigma_2 \mathcal{K}$

- no symmetry-allowed mass term exists \Rightarrow impossible to localize $(\sigma_1 \text{ and } \sigma_2 \text{ violate TRS})$

- describes edge state of 2D topological insulator in class All

*Dirac matrices with rank 4:

$$\mathcal{H}(k) = k\sigma_3 \otimes \tau_1 + m\sigma_0 \otimes \tau_3 \qquad T = i\sigma_2 \otimes \tau_0 \mathcal{K}$$

- extra symmetry preserving mass term: $M\sigma_3\otimes au_2$

 \implies class All in 1D is topologically trivial

space of normalized mass matrices

$$V_{d=1,r=4}^{\text{AII}} = \{ \mathbf{M} \cdot \mathbf{X} | \mathbf{M}^2 = 1 \} = S^1 \qquad R_3 : U(2N)/Sp(N)$$
$$\mathbf{M} = (m, M), \qquad \mathbf{X} = (\sigma_0 \otimes \tau_3, \sigma_3 \otimes \tau_2)$$

• connectedness of space of normalized Dirac masses: $\pi_0(R_3) = 0$

Two-dimensional Dirac Hamiltonian in symmetry class All

 $T^{-1}\mathcal{H}(-\mathbf{k})T = +\mathcal{H}(\mathbf{k}) \qquad T^2 = -1$

• Dirac matrices with rank 4: $T = i\sigma_2 \otimes \tau_0 \mathcal{K}$

$$\mathcal{H}(\mathbf{k}) = k_1 \sigma_3 \otimes \tau_1 + k_2 \sigma_0 \otimes \tau_2 + m \sigma_0 \otimes \tau_3$$

- no symmetry-allowed mass term exists \Rightarrow topologically non-trivial ($\sigma_1 \otimes \tau_1, \sigma_2 \otimes \tau_1$ violate TRS)

• "Doubled" Dirac Hamiltonian:

$$\mathcal{H}_{2}(\mathbf{k}) = \begin{pmatrix} \mathcal{H}(\mathbf{k}) & 0\\ 0 & \hat{\mathcal{H}}_{\mu\nu\lambda}(\mathbf{k}) \end{pmatrix} \qquad \mu, \nu, \lambda \in \{+1, -1\}$$
$$\hat{\mathcal{H}}_{\mu\nu\lambda}(\mathbf{k}) = \mu k_{1}\sigma_{3} \otimes \tau_{1} + \nu k_{2}\sigma_{0} \otimes \tau_{2} + \lambda m\sigma_{0} \otimes \tau_{3}$$

- extra symmetry preserving mass terms:

e.g. for
$$\mu = +, \nu = +, \lambda = +: \sigma_2 \otimes \tau_1 \otimes s_1, \sigma_1 \otimes \tau_2 \otimes s_2$$

- \implies gapped surface spectrum
- \implies class AII in 2D has Z_2 classification
- space of normalized mass matrices: $R_2 = O(2N)/U(N)$ $\pi_0(R_2) = \mathbb{Z}_2$

Dirac Hamiltonian in symmetry class A

• One-dimensional Dirac Hamiltonian with rank 2:

 $\mathcal{H}(k) = k\sigma_1 + m\sigma_2 + \mu\sigma_0$

— extra symmetry preserving mass term: $M\sigma_3$

 \implies class A in 1D is topologically trivial

- space of normalized mass matrices

 $V_{d=1,r=2}^{A} = \{\tau_2 \cos \theta + \tau_3 \sin \theta | 0 \le \theta < 2\pi\} = S^1 \qquad C_1: \ U(N)$

- connectedness of space of normalized Dirac masses: $\pi_0(C_1) = 0$
- *Two-dimensional* Dirac Hamiltonian with rank 2:

 $\mathcal{H}(\mathbf{k}) = k_x \sigma_x + k_y \sigma_y + m \sigma_z + \mu \sigma_0$

- no extra mass term exists \Rightarrow class A in 2D is topologically non-trivial
- describes two-dimensional Chern insulator
- *Two-dimensional* "doubled" Dirac Hamiltonian:

 $\mathcal{H}_2(\mathbf{k}) = \mathcal{H}(\mathbf{k}) \otimes \tau_0$

- no extra gap opening mass term exists \Rightarrow topologically non-trivial

 \Rightarrow indicates \mathbbm{Z} classification

Homotopy classification of Dirac mass gaps

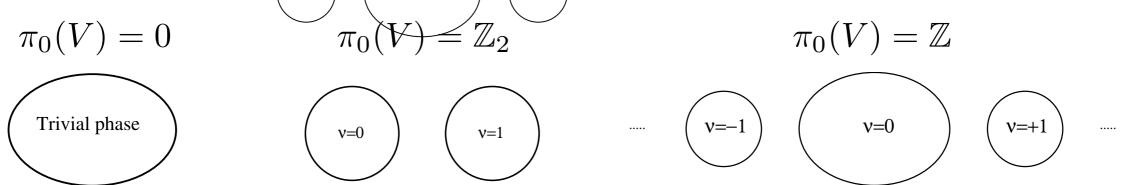
* The space of mass matrices $V_{d,r=N}^s$ belongs to different

classifying spaces C_{s-d} (for "complex class") or R_{s-d} (for "real class")

- the relation between AZ symmetry class and classifying space is as follows:

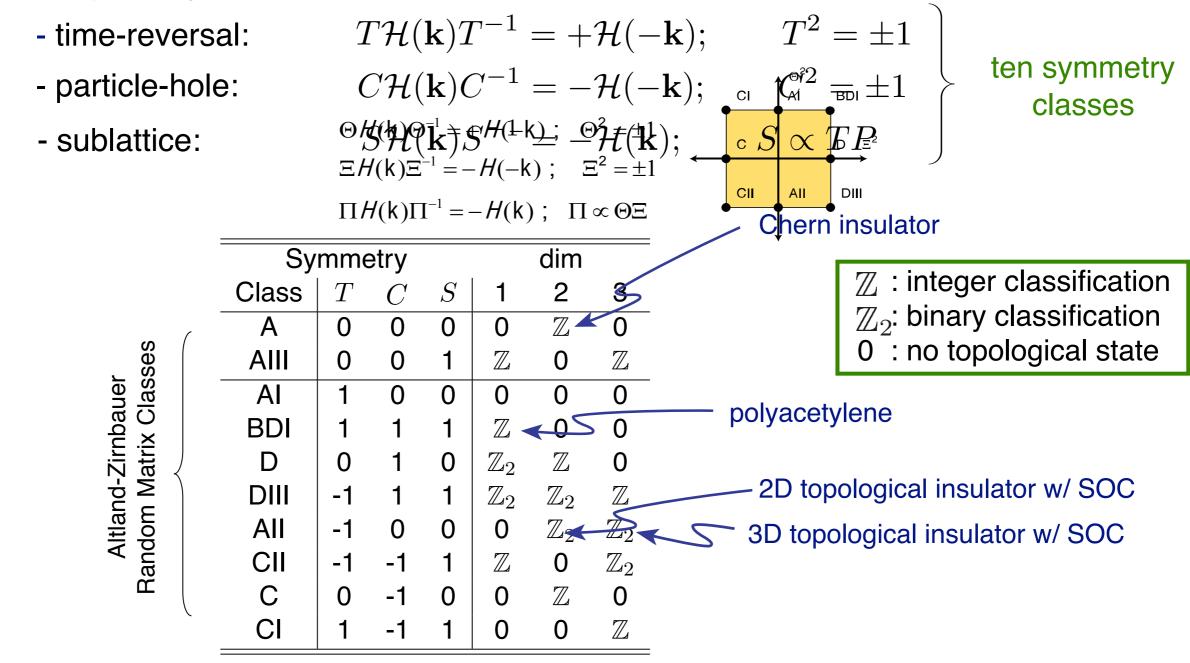
	classifying space	$\pi_0(*)$	1D AZ class	2D AZ class
\mathcal{C}_0	$\cup_{n=0}^{N} \{ U(N) / [U(n) \times U(N-n)] \}$	\mathbb{Z}	AIII	A
${\mathcal C}_1$	U(N)	0	А	AIII
\mathcal{R}_0	$\cup_{n=0}^{N} \{ O(N) / [O(n) \times O(N-n)] \}$	\mathbb{Z}	BDI	D
\mathcal{R}_1	O(N)	\mathbb{Z}_2	D	DIII
\mathcal{R}_2	O(2N)/U(N)	\mathbb{Z}_2	DIII	AII
\mathcal{R}_3	U(N)/Sp(N)	0	AII	CII
\mathcal{R}_4	$\cup_{n=0}^{N} \{Sp(N)/[Sp(n) \times Sp(\mathcal{W}^{\underline{ial}\underline{p}\underline{h}asc})]\}$	\mathbb{Z}	CII	\mathbf{C}
\mathcal{R}_5	Sp(N)	0		CI
\mathcal{R}_6	Sp(2N)/U(N)	0	(Trivial phase CI) AI
\mathcal{R}_7	$\frac{U(N)/O(N)}{(N)} (v_{\nu=-1/2}) (v_{\nu=+1/2}) \cdots$	0	AL	BDI

* The 0th homotopy group indexes the disconnected parts of the space of $\operatorname{normalized}$ mass matrices



Ten-fold classification:

- classifies fully gapped topological materials in terms of *non-spatial symmetries* (i.e., symmetries that act *locally* in space)
- non-spatial symmetries:



Schnyder, Ryu, Furusaki, Ludwig, PRB (2008)

A. Kitaev, AIP (2009)

Ten-fold classification:

- classifies fully gapped topological materials in terms of *non-spatial symmetries* (i.e., symmetries that act *locally* in space)
- non-spatial symmetries:

- time-reversal:			$T\mathcal{H}(\mathbf{k})T^{-1} = +\mathcal{H}(-$					$(\mathbf{k}); \qquad T^2$	$=\pm1$			
- particle-hole:		$C\mathcal{H}(\mathbf{k})C^{-1} = -\mathcal{H}(-$					$-\mathcal{H}(-$	\mathbf{k}); ci \mathbf{k}	$\overline{\mathbf{BD}} \pm 1$	ten symmetry classes		
- sublattice:		Ξŀ	/(k)Ξ	= 1 = -	- <i>H</i> (–k); 3	$\mathcal{P}_{\mathcal{H}}^{2}(\mathbf{k})$); c $S \propto$				
				$[^{-1} = \cdot$	- <i>H</i> (k)		$\propto \Theta \Xi$	• •	•			
	Sy	mme	etry			dim			F 77			
	Class	$\mid T$	C	S	1	2	3			er classification		
()	A	0	0	0	0	\mathbb{Z}	0			y classification		
. Se	AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}		0 : no to	pological state		
uer	AI	1	0	0	0	0	0					
adr x C	BDI	1	1	1	\mathbb{Z}	0	0/	chiral p-way	e supercond	ductor (Sr ₂ RuO ₄)		
∠zirr ∫	D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0		-			
-pu	DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z} <		pological trip	let SC (³ He B)		
Altland-Zirnbauer Random Matrix Classes	All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2					
anc	CII	-1	-1	1	Z	0	\mathbb{Z}_2	Chira	al d-wave su	perconductor		
r (С	0	-1	0	0	\mathbb{Z}^{\prec}	€0>					
	CI	1	-1	1	0	0	\mathbb{Z}					

Ten-fold classification:

 classifies fully gapped topological materials in terms of *non-spatial symmetries* (i.e., symmetries that act *locally* in space)

1

-1

-1

-1

-1 1

-1 0

-1

0

1

0

D

DIII

All

CII

С

CI

0

1

0

1

0

1

 \mathbb{Z}_2

 \mathbb{Z}_2

0

 $\mathbb Z$

0

0

- non-spatial symmetries:
 - time-reversal: particle-hole: sublattice: $T\mathcal{H}(\mathbf{k})T^{-1} = +\mathcal{H}(-\mathbf{k}); \qquad T^{2} = \pm 1$ $C\mathcal{H}(\mathbf{k})C^{-1} = -\mathcal{H}(-\mathbf{k}); \qquad C^{2}\mathcal{H}(-\mathbf{k}); \qquad C^{2}\mathcal{$ ten symmetry classes All DIII CII $\Pi H(\mathbf{k})\Pi^{-1} = -H(\mathbf{k}); \quad \Pi \propto \Theta \Xi$ Symmetry Spatial Dimension d S5 T2 3 4 6 8 CClass 1 7 • • • \mathbb{Z} \mathbb{Z} 0 0 \mathbb{Z} 0 \mathbb{Z} 0 0 0 0 Α . . . AIII 0 \mathbb{Z} 0 \mathbb{Z} 0 \mathbb{Z} 0 \mathbb{Z} 0 1 0 . . . 0 0 \mathbb{Z}_2 \mathbb{Z} 0 0 0 \mathbb{Z} \mathbb{Z}_2 1 AI 0 . . . 1 1 \mathbb{Z} 0 \mathbb{Z} 1 0 0 BDI 0 \mathbb{Z}_2 \mathbb{Z}_2 • • •

 \mathbb{Z}

 \mathbb{Z}_2

 \mathbb{Z}_2

 \mathbb{Z}

0

0

0

 \mathbb{Z}

 \mathbb{Z}_2

 \mathbb{Z}_2

0

 \mathbb{Z}

0

 \mathbb{Z}

 \mathbb{Z}_2

 \mathbb{Z}_2

0

0

 \mathbb{Z}_2

 \mathbb{Z}_2

0 0 0

 \mathbb{Z}

 \mathbb{Z} 0 0

 \mathbb{Z}

 \mathbb{Z}_2

0 0

0

 \mathbb{Z}

0

0

 \mathbb{Z}

 \mathbb{Z}_2

0

 \mathbb{Z}

0

0

0

. . .

• • •

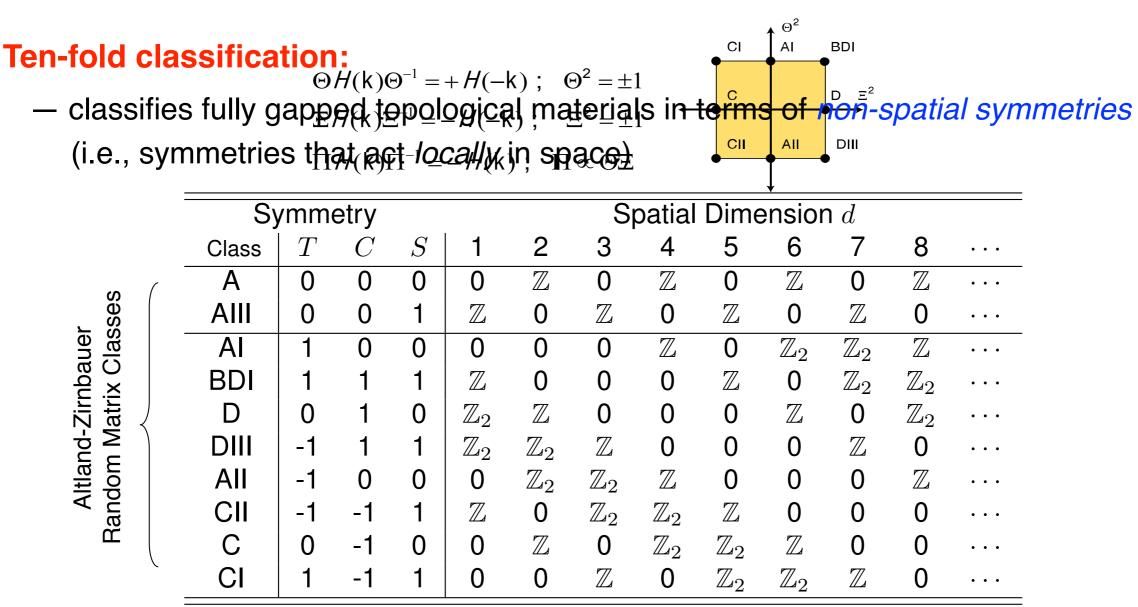
• • •

. . .

. . .

. . .

Altland-Zirnbauer Random Matrix Classes



• Topological invariants: Chern numbers and winding numbers

$$Ch_{n+1}[\mathcal{F}] = \frac{1}{(n+1)!} \int_{\mathrm{BZ}^{d=2n+2}} \operatorname{tr}\left(\frac{i\mathcal{F}}{2\pi}\right)^{n+1}$$
$$\nu_{2n+1}[q] = \frac{(-1)^n n!}{(2n+1)!} \left(\frac{i}{2\pi}\right)^{n+1} \int_{\mathrm{BZ}} \epsilon^{\alpha_1 \alpha_2 \cdots} \operatorname{tr}\left[q^{-1} \partial_{\alpha_1} q \cdot q^{-1} \partial_{\alpha_2} q \cdots\right] d^{2n+1}k$$

Extension I: Weak topological insulators and supercondutors

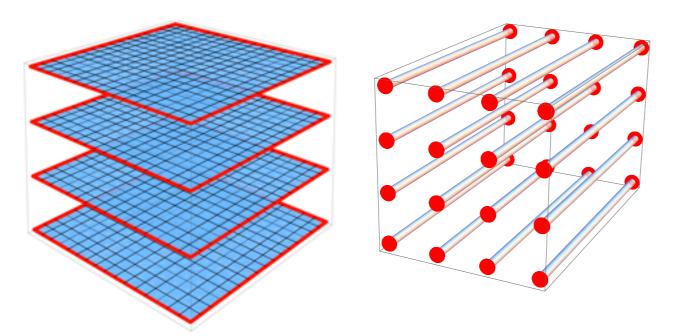
strong topological insulators (superconductors): not destroyed by positional disorder

weak topological insulators (superconductors): only possess topological features when translational symmetry is present

weak topological insulators (superconductors) are topologically equivalent to parallel stacks of lowerdimensional strong topological insulator (SCs).

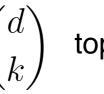
co-dimension k=1

co-dimension k=2



	Dimension						
AZ	Т	С	S	1	2	3	4
Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}
BDI	1	1	1	Z	0	0	0
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
CII	-1	-1	1	Z	0	\mathbb{Z}_2	\mathbb{Z}_2
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2
CI	1	-1	1	0	0	\mathbb{Z}	0

→ d-dim.weak topological insulators (SCs) of co-dimension k can occur whenever there exists a strong topological state in same symmetry class but in (d-k) dimensions.



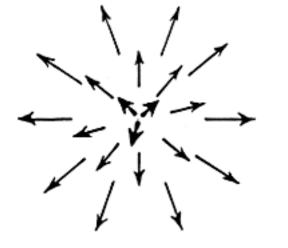
top. invariants $0 < k \le d$

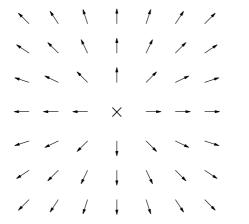
cf. Kitaev, AIP Conf Proc. 1134, 22 (2009)

Extension II: Zero mode localized on topological defect

Protected zero modes can also occur at topological defects in D-dim systems

Point defect (r=0): Hedgehog (D=3), vortex (D=2), domain wall (D=1)





Line defect (r=1): dislocation line (D=3) domain wall (D=2)

Two-dim defects (r=2): domain wall (D=3)

Freedman, et. al., PRB (2010) Teo & Kane, PRB (2010) Ryu, et al. NJP (2010)

	Dimension						
AZ	Т	С	S	1	2	3	4
Α	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}
BDI	1	1	1	Z	0	0	0
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0
All	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
CII	-1	-1	1	Z	0	\mathbb{Z}_2	\mathbb{Z}_2
С	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2
CI	1	-1	1	0	0	\mathbb{Z}	0

Can an r-dimensional topological defect of a given symmetry class bind gapless states or not?

look at column d=(r+1)

(answer does not depend on D!)

line defect in class A:

$$n = \frac{1}{8\pi^2} \int_{T^3 \times S^1} \operatorname{Tr}[\mathcal{F} \wedge \mathcal{F}]$$

(second Chern no = no of zero modes)